scholarly journals Soybean Oil Enriched with Antioxidants Extracted from Watermelon (Citrullus colocynthis) Skin Sap and Coated in Hydrogel Beads via Ionotropic Gelation

Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1370
Author(s):  
Muhammad Farooq ◽  
Elham Azadfar ◽  
Monica Trif ◽  
Ramezan Ali Jabaleh ◽  
Alexandru Rusu ◽  
...  

Many plants and fruits are rich in antioxidant and antimicrobial compounds, such as phenolic compounds. Watermelon is one example, as various parts of the fruit present interesting phytochemical profiles. This study demonstrates that a natural C. colocynthis (watermelon) (W) skin sap (SS) extract can effectively improve the oxidative stability of microencapsulated soybean (SB) oil. By employing a combination of alginate–xanthan gums (AXG) in a matrix hydrogel bead model with WSS extract, high encapsulation efficiency can be obtained (86%). The effects of process variables on the ultrasound-assisted extraction (UAE) of phenolic compounds from watermelon (W) skin sap (SS) using the response surface methodology (RSM), as an optimized and efficient extraction process, are compared with the effects of a conventional extraction method, namely the percolation method. The WSS extracts are obtained via UAE and RSM or the conventional percolation extraction method. The two obtained extracts and synthetic antioxidant butylated hydroxytolune (BHT) are added to SB oil separately and their antioxidant effects are tested and compared. The results show the improved oxidative stability of SB oil containing the extract obtained via the optimized method (20–30%) compared to the SB oil samples containing extract obtained via the percolation extraction method, synthetic antioxidant (BHT), and SB oil only as the control (no antioxidant added). According to existing studies, we assume that the use of WSS as an effective antioxidant will ensure the prolonged stability of encapsulated SB oil in hydrogel beads, as it is well known that extended storage under different conditions may lead to severe lipid oxidation.

2020 ◽  
Vol 10 (9) ◽  
pp. 3313 ◽  
Author(s):  
Duangjai Tungmunnithum ◽  
Ahmed Elamrani ◽  
Malika Abid ◽  
Samantha Drouet ◽  
Reza Kiani ◽  
...  

Almond (Prunus dulcis (Mill.) D.A. Webb) is one of the most important nut crops both in terms of area and production. Over the last few decades, an important part of the beneficial actions for health associated with their consumption was attributed to the phenolic compounds, mainly accumulated in almond skin. Interestingly, after cold-pressed oil extraction, most of these antioxidant phenolic compounds are retained in a skin-enriched by-product, a so-called almond cold-pressed oil residue. In Morocco, the fifth highest ranking producer in the world, this production generates an important part of this valuable byproduct. In the present study, using a multivariate Box–Behnken design, an ultrasound-assisted extraction method of phenolic compounds from Moroccan almond cold-pressed oil residue was developed and validated. Response surface methodology resulted in the optimal extraction conditions: the use of aqueous ethanol 53.0% (v/v) as a green solvent, applying an ultrasound frequency of 27.0 kHz for an extraction duration of 29.4 min. The present ultrasound-assisted extraction allowed substantial gains in terms of extraction efficiency compared to conventional heat reflux extraction. Applied to three different local Beldi genotypes growing at three different experimental sites, the optimal conditions for ultrasound-assisted extraction led to a total phenolic content of 13.86 mg/g dry weight. HPLC analysis revealed that the main phenolic compounds from this valuable byproduct were: chlorogenic acid followed by protocatechuic acid, p-hydroxybenzoic acid, and p-coumaric acid. The accumulation of these phenolic compounds appeared to be more dependent on the genetic background than on the environmental impact here represented by the three experimental culture sites. Both in vitro cell free and cellular antioxidant assays were performed, and revealed the great potential of these extracts. In particular, correlation analysis provided evidence of the prominent roles of chlorogenic acid, protocatechuic acid, and p-hydroxybenzoic acid. To summarize, the validated ultrasound-assisted extraction method presented here is a quick, green, simple and efficient for the possible valorization of antioxidant phenolic compounds from Moroccan almond cold-pressed oil residues, making it possible to generate extracts with attractive antioxidant activities for future nutraceutical and/or cosmetic applications.


2019 ◽  
Vol 4 (2) ◽  

There is a worldwide demand for phenolic compounds (PC) because they exhibit several biological activities. This work aimed at extracting phenolic compounds from peanut meal. The methods of extraction were mainly: conventional solvent extraction (traditional methods) and ultrasound assisted extraction (recent methods) and comparing their results. Peanut meal (PM) was prepared by defatting with n-hexane, and then extracted by the two previous methods. First, the conventional solvents used were 80% methanol, ethanol, acetone, isopropanol, and distilled water. Then studied Different parameters such as meal: water ratio, also the effect of temperature and the pH on the extraction process. Second, ultrasonic assisted extractions (USAE), the parameters investigated were temperature, time and speed of sonication. Finally, all the extracts were analyzed by HPLC for their phenolic contents. Results indicated that the highest extracted PC achieved by solvents was in distilled water where 1:100, Meal: Water ratio which extracted 40 mg PC / g PM at 30& 35°C. Highest extracted PC was achieved by alkaline medium at pH 12 more than acidic and neutral medium. While (USAE) at speed 8 ultrasonication and temperature 30ᵒC, extracted 49.2mg PC /g PM. Sothe ultrasound assisted extraction exhibited great influence on the extraction of phenolic compounds from peanut meal. The ultrasonic peanut extract was examined for its antioxidant, antimicrobial and anticarcinogenic activities. The antioxidant activity of PM phenolic extract prepared by ultrasonic technique, was measured by, β-carotene, and DPPH methods, and reducing antioxidant power. Results revealed values: 84.57, 57.72 and 5960 respectively. The PM extract showed different levels of antimicrobial activity against the pathogenic bacteria used. As for the anticarcinogenic effect PM phenolic extract most effective on inhibiting colon carcinoma and lung carcinoma cell lines with IC50 = 20.7 and 20.8 µ/ml., respectively. This was followed by intestinal carcinoma and liver carcinoma cell lines with IC50= 39.6 and 40.2µ/ml.


Author(s):  
Nithyakalyani K

Ficus benghalensis is one of those taboo plants in India, which was claimed to be possessed and have weird effects on human health. Apart from this ficus species has a great variety of chemical constituents and an abundant amount of antioxidants. Drying is the most critical stage of improving the activity or preventing the loss of chemical components from a drug. There is another stage of ensuring high chemical constituent content in the plant and that is the extraction procedure. So the point of focus in the current research is to find the effect of extraction method and drying on the anti-inflammatory potential of the plant. The result of the extraction method and drying method of the plant was investigated and found that the ultrasound-assisted extraction of the shade dried leaves was found to give the highest yield of flavonoids and activity.


2020 ◽  
Vol 159 ◽  
pp. 105525 ◽  
Author(s):  
Cheila B. do C. de Sousa ◽  
Gilvanda L. dos Anjos ◽  
Rafaela S.A. Nóbrega ◽  
Andréia da S. Magaton ◽  
Fabrício M. de Miranda ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 942
Author(s):  
Emilie Isidore ◽  
Hamza Karim ◽  
Irina Ioannou

Cannabis sativa L. is a controversial crop due to its high tetrahydrocannabinol content varieties; however, the hemp varieties get an increased interest. This paper describes (i) the main categories of phenolic compounds (flavonoids, stilbenoids and lignans) and terpenes (monoterpenes and sesquiterpenes) from C. sativa by-products and their biological activities and (ii) the main extraction techniques for their recovery. It includes not only common techniques such as conventional solvent extraction, and hydrodistillation, but also intensification and emerging techniques such as ultrasound-assisted extraction or supercritical CO2 extraction. The effect of the operating conditions on the yield and composition of these categories of phenolic compounds and terpenes was discussed. A thorough investigation of innovative extraction techniques is indeed crucial for the extraction of phenolic compounds and terpenes from cannabis toward a sustainable industrial valorization of the whole plant.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 523
Author(s):  
Stefania Stelluti ◽  
Matteo Caser ◽  
Sonia Demasi ◽  
Valentina Scariot

Tepals constitute the most abundant bio-residues of saffron (Crocus sativus L.). As they are a natural source of polyphenols with antioxidant properties, they could be processed to generate valuable biorefinery products for applications in the pharmaceutical, cosmetic, and food industries, becoming a new source of income while reducing bio-waste. Proper storage of by-products is important in biorefining and dehydration is widely used in the herb sector, especially for highly perishable harvested flowers. This study aimed to deepen the phytochemical composition of dried saffron tepals and to investigate whether this was influenced by the extraction technique. In particular, the conventional maceration was compared with the Ultrasound Assisted Extraction (UAE), using different solvents (water and three methanol concentrations, i.e., 20%, 50%, and 80%). Compared to the spice, the dried saffron tepals showed a lower content of total phenolics (average value 1127.94 ± 32.34 mg GAE 100 g−1 DW) and anthocyanins (up to 413.30 ± 137.16 mg G3G 100 g−1 DW), but a higher antioxidant activity, which was measured through the FRAP, ABTS, and DPPH assays. The HPLC-DAD analysis detected some phenolic compounds (i.e., ferulic acid, isoquercitrin, and quercitrin) not previously found in fresh saffron tepals. Vitamin C, already discovered in the spice, was interestingly detected also in dried tepals. Regarding the extraction technique, in most cases, UAE with safer solvents (i.e., water or low percentage of methanol) showed results of phenolic compounds and vitamin C similar to maceration, allowing an improvement in extractions by halving the time. Thus, this study demonstrated that saffron tepals can be dried maintaining their quality and that green extractions can be adopted to obtain high yields of valuable antioxidant phytochemicals, meeting the requirement for a sustainable biorefining.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 582
Author(s):  
Inês Mansinhos ◽  
Sandra Gonçalves ◽  
Raquel Rodríguez-Solana ◽  
José Luis Ordóñez-Díaz ◽  
José Manuel Moreno-Rojas ◽  
...  

The present study aimed at evaluating the effectiveness of different natural deep eutectic solvents (NADES) on the extraction of phenolic compounds from Lavandula pedunculata subsp. lusitanica (Chaytor) Franco, on the antioxidant activity, and acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase (Tyr) inhibitory capacities. Ten different NADES were used in this research and compared with conventional solvents. Ultrasound-assisted extraction (UAE) for 60 min proved to be the best extraction condition, and proline:lactic acid (1:1) and choline chloride:urea (1:2) extracts showed the highest total phenolic contents (56.00 ± 0.77 mgGAE/gdw) and antioxidant activity [64.35 ± 1.74 mgTE/gdw and 72.13 ± 0.97 mgTE/gdw in 2.2-diphenyl-1-picrylhydrazyl (DPPH) and 2.2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods, respectively]. These extracts also exhibited enzymes inhibitory capacity particularly against Tyr and AChE. Even so, organic acid-based NADES showed to be the best extractants producing extracts with considerable ability to inhibit enzymes. Twenty-four phenolic compounds were identified by HPLC-HRMS, being rosmarinic acid, ferulic acid and salvianolic acid B the major compounds. The results confirmed that the combination of UAE and NADES provide an excellent alternative to organic solvents for sustainable and green extraction, and have huge potential for use in industrial applications involving the extraction of bioactive compounds from plants.


2020 ◽  
Vol 16 (1-2) ◽  
Author(s):  
Cassiano Brown da Rocha ◽  
Caciano Pelayo Zapata Noreña

AbstractThe grape pomace is a by-product from the industrial processing of grape juice, which can be used as a source of bioactive compounds. The aim of this study was to separate the phenolic compounds from grape pomace using an acidic aqueous solution with 2 % citric acid as a solvent, using both ultrasound-assisted extraction, with powers of 250, 350 and 450 W and times of 5, 10 and 15 min, and microwave-assisted extraction using powers of 600, 800 and 1,000 W and times of 5, 7 and 10 min. The results showed that for both methods of extraction, the contents of total phenolic compounds and antioxidant activity by ABTS and DPPH increased with time, and microwave at 1,000 W for 10 min corresponded to the best extraction condition. However, the contents of phenolic compounds and antioxidant activity were lower than exhaustive extraction using acidified methanol solution.


Sign in / Sign up

Export Citation Format

Share Document