scholarly journals Study on the Optimum Steel Slag Content of SMA-13 Asphalt Mixes Based on Road Performance

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1436
Author(s):  
Wei Chen ◽  
Jincheng Wei ◽  
Xizhong Xu ◽  
Xiaomeng Zhang ◽  
Wenyang Han ◽  
...  

To reduce the use of aggregates such as limestone and basalt, this paper used steel slag to replace some of the limestone aggregates in the production of SMA-13 asphalt mixes. The optimum content of steel slag in the SMA-13 asphalt mixes was investigated, and the performance of these mixes was evaluated. Five SMA-13 asphalt mixes with varying steel slag content (0%, 25%, 50%, 75%, and 100%) were designed and prepared experimentally. The high-temperature stability, low-temperature crack resistance, water stability, dynamic modulus, shear resistance, and volumetric stability of the mixes were investigated using the wheel tracking, Hamburg wheel tracking, three-point bending, freeze–thaw splitting, dynamic modulus, uniaxial penetration, and asphalt mix expansion tests. The results showed that compared to normal SMA-13 asphalt mixes, the high-temperature stability, water stability, and shear resistance of the SMA-13 asphalt mixes increased and then decreased as the steel slag content increased. All three performance indicators peaked at 75% steel slag content, and the dynamic stability, freeze–thaw splitting ratio, and uniaxial penetration strength increased by 90.48%, 7.39%, and 88.08%, respectively; however, the maximum bending tensile strain, which represents the low-temperature crack resistance of the asphalt mix, decreased by 5.98%. The dynamic modulus of the SMA-13 asphalt mixes increased with increasing steel slag content, but the volume expansion at a 75% steel slag content was 0.446% higher than at a 0% steel slag content. Based on the experimental results, the optimum content of steel slag for SMA-13 asphalt mixes was determined to be 75%.

Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2548 ◽  
Author(s):  
Yanhai Yang ◽  
Ye Yang ◽  
Baitong Qian

Cold recycled mixes using asphalt emulsion (CRME) is an economical and environmentally-friendly technology for asphalt pavement maintenance and rehabilitation. In order to determine the optimum range of cement contents, the complex interaction between cement and asphalt emulsion and the effects of cement on performance of CRME were investigated with different contents of cement. The microstructure and chemical composition of the fracture surface of CRME with different contents of cement were analyzed in this paper as well. Results show that the high-temperature stability and moisture susceptibility of CRME increased with the contents of cement increasing. The low-temperature crack resistance ability gradually increased when the content of cement is increased from 0% to 1.5%. However, it gradually decreased when the content of cement is increased from 1.5% to 4%. Cold recycled mixes had better low-temperature cracking resistance when the contents of cement were in the range from 1% to 2%. The results of microstructure and energy spectrum analysis show that the composite structure is formed by hydration products and asphalt emulsion. The study will be significant to better know the effects of cement and promote the development of CRME.


2011 ◽  
Vol 255-260 ◽  
pp. 3166-3170
Author(s):  
Li Ming Wang ◽  
Yi Qiu Tan ◽  
Zhen Wu Shi

Additives on low temperature compaction and performances of compacted mixtures, the author devised low temperature environment compaction test, and then, comparison tests of volume parameters, high temperature stability, low temperature crack resistance and water sensitivity were conducted. Tests results showed that the wax additives and the surface-active additive can significantly contribute to mixtures low-temperature compactibility. The wax additive helps to improve high temperature stability obviously, and has no significant contribution to low temperature crack resistance and water sensitivity. The surface-active additive directly reduces water sensitivity, the wax additive indirectly plays the role of reducing water sensitivity by increasing the density of mixture, and the foam additive has no obvious effect on the water sensitivity.


2014 ◽  
Vol 941-944 ◽  
pp. 324-328 ◽  
Author(s):  
Zhong Ping Yao ◽  
Meng Li ◽  
Wei Liu ◽  
Zhen Bei Chen ◽  
Rong Hui Zhang

Use polyurethane rubber composite modified asphalt.Through the Marshall test and rutting test, test of polyurethane rubber asphalt mixture high temperature stability, low temperature crack resistance and water damage resistance, verify the composite modification advantages.


2011 ◽  
Vol 266 ◽  
pp. 175-179 ◽  
Author(s):  
Yuan Xun Zheng ◽  
Ying Chun Cai ◽  
Ya Min Zhang

In order to discuss the effect of the basalt fiber on reinforcing pavement performance of asphalt mixtures, the optimum dosage of asphalt and fibers were studied by the method of Marshall test and rut test firstly. Then pavement performances of basalt fiber-modified asphalt mixtures were investigated through tests of high temperature stability, water stability and low temperature crack resistance, and compared with that of polyester fiber, xylogen fiber and control mixture. The testing results showed that the pavement performance of fiber-modified asphalt mixture are improved and optimized comparing with control asphalt mixture, and the performance of basalt fiber-modified asphalt mixture with best composition were excelled than those of polyester fiber and xylogen fiber.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 663 ◽  
Author(s):  
Baowen Lou ◽  
Zhuangzhuang Liu ◽  
Aimin Sha ◽  
Meng Jia ◽  
Yupeng Li

Excessive usage of non-renewable natural resources and massive construction wastes put pressure on the environment. Steel slags, the main waste material from the metal industry, are normally added in asphalt concrete to replace traditional aggregate. In addition, as a typical microwave absorber, steel slag has the potential to transfer microwave energy into heat, thus increasing the limited self-healing ability of asphalt mixture. This paper aims to investigate the microwave absorption potentials of steel slag and the effect of its addition on road performance. The magnetic parameters obtained from a microwave vector network analyzer were used to estimate the potential use of steel slag as microwave absorber to heal cracks. Meanwhile, the initial self-healing temperature was further discussed according to the frequency sweeping results. The obvious porous structure of steel slag observed using scanning electron microscopy (SEM) had important impacts on the road performance of asphalt mixtures. Steel slag presented a worse effect on low-temperature crack resistance and water stability, while high-temperature stability can be remarkably enhanced when the substitution of steel slag was 60% by volume with the particle size of 4.75–9.5 mm. Overall, the sustainability of asphalt mixtures incorporating steel slag can be promoted due to its excellent mechanical and microwave absorption properties.


2013 ◽  
Vol 361-363 ◽  
pp. 1681-1688 ◽  
Author(s):  
Hai Sheng Zhao ◽  
Wei Chen ◽  
Xiao Yan Wang

This paper used one kind of organic additive LEADCAP to reduce the compacting temperature of SBS WMA mixture, and compared the WMA mixture compacted by superpave gyratory compactor (SGC) with HMA mixture to determine the compacting temperature of WMA mixture. Rutting test, low temperature bending test, freeze-thaw indirect tension test, Hamburg Wheel-Track test and dynamic modulus were carried out to evaluate the road performance of WMA mixed with LEASCAP. The test result showed that the WMA mixed with LEADCAP had well performed high temperature stability, low temperature stability, water stability, rutting cracking resistance, and high dynamic modulus, the compacting temperature were 127 °C, and affectively reduced the compacting temperature of SBS WMA mixture.


2012 ◽  
Vol 238 ◽  
pp. 22-25 ◽  
Author(s):  
Yuan Zhao Chen ◽  
Zhen Xia Li

In order to discuss the effectiveness of basalt fiber in reinforcing pavement performance of asphalt mixtures, the pavement performances of basalt fiber asphalt mixtures were investigated by tests of high temperature stability, water stability and low temperature crack resistance, and compared with the pavement performance of asphalt mixtures with polyester fiber and xylogen fiber, and that of reference mixture. The results show that pavement performance of fiber asphalt mixture are improved and optimized comparing with reference asphalt mixture, the performance of asphalt mixture with basalt fiber are excelled than those with polyester fiber and xylogen fiber while the dosage of fibers is keeping at the optimum.


2012 ◽  
Vol 178-181 ◽  
pp. 1338-1343
Author(s):  
Wei Jiang ◽  
Jing Jing Xiao

According to the porous asphalt concrete’s big void structure as well as high temperature and rainy application environment, the author point out that using the conventional evaluation index such as high temperature stability and water stability to evaluate the PAC’s performance seem single, and then put up with estimating the PAC’s pavement performance by means of Hamburg Wheel Tracking under the water-high temperature’s comprehensive action. Studied on the PAC with the same raw materials and different gradations, and compared with the experimental results of AC-13 modified asphalt mixture and SMA-13, the results shows that, Hamburg Wheel Tracking test not only considered the water-high temperature’s comprehensive action on mixture, but also considered the mixture’s performance decay under long-term loading. Hamburg Wheel Tracking test can evaluate the PAC’s performance more practically, the PAC which materials and graduations reasonably designed have good performance, and its Hamburg Wheel Tracking final deformation is only 3.89mm, it can satisfy the demand from the high temperature and rainy environment. As well, the test results also comes to the conclusions that under the same materials and the same air voids, the PAC with coarse framework structure own better water stability and water-high temperature stability.


2015 ◽  
Vol 2 (1) ◽  
pp. 124 ◽  
Author(s):  
Mouhamed Lamine Chérif Aidara ◽  
Makhaly Ba ◽  
Alan Carter

The main purpose of this paper is to model the master curve of dynamic modulus |E*| for Hot Mix Asphalt mix designed with aggregate from Senegal named basalt of Diack and quartzite of Bakel. The prediction model used is the Witczak model, used in the Mechanistic-Empirical Pavement Design Guide. A study has been conducted in the Laboratory of Pavements and Bituminous Materials. Six different HMA (BBSG 0/14 mm) were subjected to complex modulus test by tension-compression according to the European or Canadian procedure using the same range of temperatures and frequencies. For each mixture studied the uniqueness of modulus curves in the Cole-Cole or in Black diagrams have shown that the asphalt mixes are thermorheologically simple materials and the Canadian test process is suitable for determining the HMA complex modulus mix designed with the aggregates from Senegal. This implies their tender with the principle of time-temperature equivalence. The test results were used to model the master curves of HMA studied. A correlation with the results of dynamic modulus measured have shown an accuracy of R2 = 0,99 and p = 0,00 in STATISTICA software, which allows to conclude that the sigmoidal model has good modeling of the dynamic modulus.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1481 ◽  
Author(s):  
Xiaoliang Zhang ◽  
Ben Zhang ◽  
Huaxin Chen ◽  
Dongliang Kuang

Road construction consumes great amounts of high-grade natural resources. Using low-grade natural rocks or some solid wastes as substitute materials is a hot topic. Considering this, the feasibility of using low-grade granite aggregate, solid waste-based filler (desulphurization gypsum residues, DGR) and binder (waste tire rubber modified asphalt, RMA) simultaneously in asphalt mixtures has been fully investigated in this research. The commonly used base asphalt and limestone powder (LP) filler were control groups. Material characteristics of raw materials mainly including micro-morphology, functional group, mineral phase, chemical composition and thermal stability were first evaluated in order to recognize them. Four asphalt mixtures (two asphalt binder and two filler) were then designed by standard Superpave method. Finally, a detailed investigation into the pavement performance of asphalt mixtures was carried out. The moisture damage resistance and low-temperature crack resistance were detected by the changing rules of stability, strength and fracture energy, and the high-temperature stability and fatigue performance were determined by wheel tracking test and indirect tensile (IDT) fatigue test, respectively. Results suggested that RMA and DGR both showed positive effects on the low-temperature crack resistance and fatigue property of the granite asphalt mixture. DGR also strengthened moisture stability. The contribution of RMA on high-temperature deformation resistance of the granite asphalt mixture was compelling. It can offset the insufficiency in high-temperature stability made by DGR. A conclusion can be made that asphalt mixture prepared with granite, DGR and RMA possesses satisfactory pavement performances.


Sign in / Sign up

Export Citation Format

Share Document