scholarly journals Effect of Deposition Pressure on the Microstructure and Optical Band Gap of Molybdenum Disulfide Films Prepared by Magnetron Sputtering

Coatings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 570 ◽  
Author(s):  
Gong ◽  
Xiao ◽  
Zhu ◽  
Wang ◽  
Ma

MoS2 films were prepared via magnetron sputtering under different deposition pressures, and the effects of deposition pressure on the crystal structure, surface morphology, and optical properties of the resulting films were investigated. The results show that the crystallinity of the films first increases and then decreases with increasing pressure. The surface of the films prepared by magnetron sputtering is dense and uniform with few defects. The deposition pressure affects the grain size, surface morphology, and optical band gap of the films. The films deposited at a deposition pressure of 1 Pa revealed remarkable crystallinity, a 30.35 nm grain size, and a 1.67 eV optical band gap. Given the large electronegativity difference between MoS2 molecules and weak van der Waals forces between layers, the MoS2 films are prone to defects at different deposition pressures, causing the exciton energy near defects to decrease and the modulation of the surrounding band.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
R. Hariharan ◽  
R. Raja ◽  
R. J. Golden Renjith Nimal ◽  
Mohamad Reda A. Refaai ◽  
S Ravi ◽  
...  

In this present research work, TiZrN and TaZrN multilayer coating was deposited on 4140 steel by RF/DC magnetron sputtering for comparative work also prepared in single layer. The flow rate ratio of Ar/N2 was set to 15 : 3 sccm and the thin film was prepared by the PVD (physical vapor deposition) method by RF/DC magnetron using a Ti-Zr and Ta-Zr target with a purity of 99.99%. The crystal structure, surface morphology microstructure, and component arrangements were explored by X-ray diffraction (XRD), scanning electron microscope (SEM), and atomic force microscopy (AFM). It has been found that the crystal structure, surface morphology, microstructure, and elemental composition of the membrane are strongly dependent on deposition parameters. It is mechanically characterized by corrosion and Vickers hardness. In AFM measurements, coarse cluster particles with increasing Ti and Ta values not only increase the average roughness (Ra) by 2.341 nm (200°C) and 2.951 nm (400°C) but also have a continuous average thickness which was shown to increase by 1.504 nm and 781.75 nm. With the increase of hardness, the roughness decreases correspondingly. The TiZrN multilayer microhardness augmented to 314 GPa at 200°C and 371 GPa for TaZrN (400°C).


2013 ◽  
Vol 422 ◽  
pp. 70-74
Author(s):  
Bo Zhang

ndium tin oxide (ITO) and indium tin tantalum oxide (ITTO) films were deposited on glass substrates at room temperature by magnetron sputtering. Properties of the ITO and ITTO films showed a dependence on annealing treatment. ITTO film deposited at room temperature showed the enhancement in (400) orientation and the increasing in grain size. With an increase in annealing temperature, the intensity of XRD peak increased and the grain size showed an evident increasing. The reflection edge in near-IR range and the absorption edge in near-UV range shifted due to the variation in carrier concentration. Ta-doping improved the carrier concentration of the films and widened the corresponding optical band gap. The variations in optical band gap were due to Burstein-Moss effect. The higher value of figure of merit of ITTO films was observed. The tantalum-doped ITO films could find extensive application in some devices.


2015 ◽  
Vol 1105 ◽  
pp. 74-77 ◽  
Author(s):  
Xiao Lin Ji ◽  
Hai Dong Ju ◽  
Tao Yu Zou ◽  
Jin Long Luo ◽  
Kun Quan Hong ◽  
...  

Copper nitride thin films were prepared by reactive radio frequency magnetron sputtering at different sputtering pressures with fixed nitrogen to argon ratio. The influences of sputtering pressure on the structure, optical band gap, and surface morphology of films were investigated. The results show that the preferential orientation of polycrystalline Cu3N thin films changes from [111] to [100] when the sputtering pressure increases. Meanwhile, the optical band gap (Eg) of Cu3N thin films increases with the sputtering pressure. The surface morphology of Cu3N thin film deposited at high sputtering pressure becomes smoother than that of Cu3N thin film deposited at low sputtering pressure.


2011 ◽  
Vol 347-353 ◽  
pp. 870-873
Author(s):  
Chun Rong Xue

Nanocrystalline silicon film has become the research hit of today’ s P-V solar technology. It’s optical band gap was controlled through changing the grain size and crystalline volume fraction for the quanta dimension effect. The crystalline volume fraction in nc-Si:H is modulated by varying the hydrogen concentration in the silane plasma. Also, the crystallinity of the material increases with increasing hydrogen dilution ratio, the band tail energy width of the nc-Si:H concurrently decreases. Two sets of nc-Si:H solar cells were made with different layer thicknesss, their electronic and photonic bandgap, absorption coefficient, optical band gap, nanocrystalline grain size(D), and etc have been stuied. In addition, we discussed the relationship between the stress of nc-Si thin films and H2 ratio. At last nc-Si:H solar cells have been designed and prepared successfully in the optimized processing parameters.


2015 ◽  
Vol 1131 ◽  
pp. 251-254
Author(s):  
Montri Aiempanakit ◽  
Chantana Salawan ◽  
Kamon Aiempanakit

The effect of continuous and discontinuous deposition time on the properties of TiO2 thin films deposited by reactive direct current magnetron sputtering (DCMS) on glass substrates was investigated. The deposition processes were designed for a condition of continuous deposition time D1 (60 min) and three conditions of discontinuous deposition time D2 (30 min × 2 times), D3 (15 min × 4 times), and D4 (1 min × 60 times). The crystal structure, surface morphology, and hydrophilicity of TiO2 thin films were characterized by X-ray diffraction, atomic force microscope, and water contact angle method, respectively. It was found that the increasing of discontinuous deposition time (conditions from D1 to D4) shows the changing of grain size from big grain size with spherical shape to small grain size with oval shape. The crystallinity of TiO2 films decrease with increasing the discontinuous deposition time. The water contact angles also decrease as a function of increasing discontinuous deposition time. These results may be explained from the accumulation of heat on the substrate which affected the phase composition and surface morphology of TiO2 thin films.


2007 ◽  
Vol 4 (2) ◽  
pp. 255-264 ◽  
Author(s):  
Benny Joseph ◽  
C. S. Menon

Thin films of Nickel Phthalocyanine (NiPc) are fabricated at a base pressure of 10-5m.bar using Hind-Hivac thermal evaporation plant. The films are deposited on to glass substrates at various temperatures 318, 363, 408 and 458K. The optical absorption spectra of these thin films are measured. Present studies reveal that the optical band gap energies of NiPc thin films are highly dependent on the substrate temperatures. The structure and surface morphology of the films deposited on glass substrates of temperatures 303, 363 and 458K are studied using X-ray diffractograms and Scanning Electron Micrographs (SEM), show that there is a change in the crystallinity and surface morphology due to change in the substrate temperatures. Full width at half maximum (FWHM) intensity of the diffraction peaks is also found reduced with increasing substrate temperatures. Scanning electron micrographs show that these crystals are fiber like at high substrate temperatures. The optical band gap increases with increase in substrate temperature and is then reduced with fiber-like grains at 408K. The band gap increases again at 458K with full of fiber like grains. Trap energy levels are also observed for these films.


2014 ◽  
Vol 14 (3) ◽  
pp. 421-427 ◽  
Author(s):  
Deuk Yong Lee ◽  
Ju-Hyun Park ◽  
Young-Hun Kim ◽  
Myung-Hyun Lee ◽  
Nam-Ihn Cho

2014 ◽  
Vol 586 ◽  
pp. S343-S347 ◽  
Author(s):  
N.V. Andreev ◽  
T.A. Sviridova ◽  
V.I. Chichkov ◽  
A.P. Volodin ◽  
C. Van Haesendonck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document