Properties of Annealed Indium Tin Tantalum Oxide Films Prepared by Reactive Magnetron Sputtering

2013 ◽  
Vol 422 ◽  
pp. 70-74
Author(s):  
Bo Zhang

ndium tin oxide (ITO) and indium tin tantalum oxide (ITTO) films were deposited on glass substrates at room temperature by magnetron sputtering. Properties of the ITO and ITTO films showed a dependence on annealing treatment. ITTO film deposited at room temperature showed the enhancement in (400) orientation and the increasing in grain size. With an increase in annealing temperature, the intensity of XRD peak increased and the grain size showed an evident increasing. The reflection edge in near-IR range and the absorption edge in near-UV range shifted due to the variation in carrier concentration. Ta-doping improved the carrier concentration of the films and widened the corresponding optical band gap. The variations in optical band gap were due to Burstein-Moss effect. The higher value of figure of merit of ITTO films was observed. The tantalum-doped ITO films could find extensive application in some devices.

Coatings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 570 ◽  
Author(s):  
Gong ◽  
Xiao ◽  
Zhu ◽  
Wang ◽  
Ma

MoS2 films were prepared via magnetron sputtering under different deposition pressures, and the effects of deposition pressure on the crystal structure, surface morphology, and optical properties of the resulting films were investigated. The results show that the crystallinity of the films first increases and then decreases with increasing pressure. The surface of the films prepared by magnetron sputtering is dense and uniform with few defects. The deposition pressure affects the grain size, surface morphology, and optical band gap of the films. The films deposited at a deposition pressure of 1 Pa revealed remarkable crystallinity, a 30.35 nm grain size, and a 1.67 eV optical band gap. Given the large electronegativity difference between MoS2 molecules and weak van der Waals forces between layers, the MoS2 films are prone to defects at different deposition pressures, causing the exciton energy near defects to decrease and the modulation of the surrounding band.


2011 ◽  
Vol 347-353 ◽  
pp. 870-873
Author(s):  
Chun Rong Xue

Nanocrystalline silicon film has become the research hit of today’ s P-V solar technology. It’s optical band gap was controlled through changing the grain size and crystalline volume fraction for the quanta dimension effect. The crystalline volume fraction in nc-Si:H is modulated by varying the hydrogen concentration in the silane plasma. Also, the crystallinity of the material increases with increasing hydrogen dilution ratio, the band tail energy width of the nc-Si:H concurrently decreases. Two sets of nc-Si:H solar cells were made with different layer thicknesss, their electronic and photonic bandgap, absorption coefficient, optical band gap, nanocrystalline grain size(D), and etc have been stuied. In addition, we discussed the relationship between the stress of nc-Si thin films and H2 ratio. At last nc-Si:H solar cells have been designed and prepared successfully in the optimized processing parameters.


2002 ◽  
Vol 730 ◽  
Author(s):  
A. Nuñez Rodriguez ◽  
M.T.S. Nair ◽  
P.K. Nair

AbstractAg2S thin films of 90 nm to 300 nm in thickness were deposited at 70°C on glass substrates immersed in a bath mixture containing silver nitrate, sodium thiosulfate and dimethylthiourea. When the films are heated in nitrogen at temperatures 200°C to 400°C, crystallinity is improved and XRD pattern similar to that of acanthite is observed. These films possess electrical conductivity of 10-3 (ohm cm)-1, are photoconductive and exhibit an optical band gap of 1.36 eV. When Ag2S thin film is deposited over a thin film of Bi2S3, also obtained by chemical bath deposition from bismuth nitrate, triethanolamine and thioacetamide, and heated at 300°C to 400°C in nitrogen, a ternary compound, AgBiS2 is formed. This material has an electrical conductivity of 5x10-5 (ohm cm)-1, is photoconductive and possesses optical band gap 0.95 eV.


2017 ◽  
Vol 25 (1) ◽  
pp. 21-27
Author(s):  
刘华松 LIU Hua-song ◽  
杨 霄 YANG Xiao ◽  
王利栓 WANG Li-shuan ◽  
姜玉刚 JIANG Yu-gang ◽  
季一勤 JI Yi-qin ◽  
...  

Nano Hybrids ◽  
2014 ◽  
Vol 6 ◽  
pp. 37-46 ◽  
Author(s):  
Tansir Ahamad ◽  
Saad M. Alshehri

Two different batches of Gallium (III) sulphide nanocrystals, (α-Ga2S3)1 and (α-Ga2S3)2 were synthesized at room temperature by the reaction of Gallium (III) chloride with sodium thiosulphate in water for 10 and 20 min respectively. The resultant nanoparticles were characterized by different spectroscopic techniques. TEM micrographs showed well-defined, close to hexagonal particles, and the lattice fringes in the HRTEM images confirmed their nanocrystalline nature. The sizes of (α-Ga2S3)1 and (α-Ga2S3)2 were 12 and 35 nm respectively with similar morphologies. Optical band gap energies (3.43 eV/3.41 eV) and photoluminescence peaks 635/641 nm (red shift) and 414/420 nm (blue shift) of the synthesized α-Ga2S3 nanocrystals suggest that they may be promising photocatalysts. Raman spectra for the α-Ga2S3, shows very sharp bands at 119, 135 and 148 cm-1 due to Ga-S2 scissoring.


2007 ◽  
Vol 4 (2) ◽  
pp. 255-264 ◽  
Author(s):  
Benny Joseph ◽  
C. S. Menon

Thin films of Nickel Phthalocyanine (NiPc) are fabricated at a base pressure of 10-5m.bar using Hind-Hivac thermal evaporation plant. The films are deposited on to glass substrates at various temperatures 318, 363, 408 and 458K. The optical absorption spectra of these thin films are measured. Present studies reveal that the optical band gap energies of NiPc thin films are highly dependent on the substrate temperatures. The structure and surface morphology of the films deposited on glass substrates of temperatures 303, 363 and 458K are studied using X-ray diffractograms and Scanning Electron Micrographs (SEM), show that there is a change in the crystallinity and surface morphology due to change in the substrate temperatures. Full width at half maximum (FWHM) intensity of the diffraction peaks is also found reduced with increasing substrate temperatures. Scanning electron micrographs show that these crystals are fiber like at high substrate temperatures. The optical band gap increases with increase in substrate temperature and is then reduced with fiber-like grains at 408K. The band gap increases again at 458K with full of fiber like grains. Trap energy levels are also observed for these films.


2019 ◽  
Vol 14 (1) ◽  
pp. 53-63 ◽  
Author(s):  
M. S. Bashar ◽  
Rummana Matin ◽  
Munira Sultana ◽  
Ayesha Siddika ◽  
M. Rahaman ◽  
...  

AbstractThe ZnS thin films have been deposited by radio frequency magnetron sputtering at room temperature. Post-deposition rapid thermal annealing treatment was done for the films deposited at different powers ranging from 70 to 100 W. One peak is observed for as-deposited and annealed thin films at around 28.48° corresponding to the (111) reflection plane indicating a zincblende structure. The overall intensity of the peaks and the FWHM values of as-deposited films increased after annealing corresponding to the increase in crystallinity. The optical energy bandgap is found in the range of 3.24–3.32 eV. With increasing annealing temperature, the decrease in the Urbach energy values indicating a decrease in localized states which is in good agreement with the XRD results where the crystallinity increased. The surface morphology of the films seems to be composed of Nano-granules with a compact arrangement. Apparently, the grain size increases in the deposited films as annealing temperature increases. The compositional ratio attained close to the stoichiometric ratio of 1:1 after annealing. From the Hall effect measurement, the carrier concentration and mobility are found to increase after annealing. The high carrier concentration and mobility also comply with structural and optical analysis. Best results are found for the film annealed at 400 °C deposited at 90 W.


2011 ◽  
Vol 485 ◽  
pp. 183-186 ◽  
Author(s):  
Tsutomu Furuta ◽  
Saki Hatta ◽  
Yoichi Kigoshi ◽  
Takuya Hoshina ◽  
Hiroaki Takeda ◽  
...  

Freestanding BaTiO3 ceramics films were fabricated using the aerosol deposition (AD) method and the size effect of nanograined BaTiO3 ceramics was demonstrated. Dense BaTiO3 thick film fabricated by the AD method was crystallized and detached from substrate by an annealing treatment at 600 °C, and then the grain size was controlled by a reannealing treatment at various temperatures. As a result, freestanding BaTiO3 thick films with various grain sizes from 24 to 170 nm were successfully obtained. Polarization–electric field (P–E) measurement revealed that BaTiO3 ceramics with grain sizes of more than 58 nm showed ferroelectricity, whereas BaTiO3 ceramics with an average grain size of 24 nm showed paraelectricity at room temperature. Dielectric measurement indicated that the permittivity decreased with decreasing grain size in the range of 170 to 24 nm.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
M. Acosta ◽  
I. Riech ◽  
E. Martín-Tovar

Zinc oxide (ZnO) thin films were grown by nonreactive RF sputtering at room temperature under varying argon pressures (PAr). Their optical band gap was found to increase from 3.58 to 4.34 eV when the argon pressure increases from 2.67 to 10.66 Pa. After annealing at 200°C and 500°C, optical band gaps decrease considerably. The observed widening of the band gap with increasingPArcan be understood as being a consequence of the poorer crystallinity of films grown at higher pressures. Measurements of morphological and electrical properties of these films correlate well with this picture. Our main aim is to understand the effects ofPAron several physical properties of the films, and most importantly on its optical band gap.


2013 ◽  
Vol 699 ◽  
pp. 789-794 ◽  
Author(s):  
Laith Rabih ◽  
Sudjatmoko ◽  
Kuwat Triyana ◽  
Pekik Nurwantoro

Titanium dioxide (TiO2 ) thin films have been deposited on glass substrates under various conditions by using a homemade reactive DC sputtering technique. The TiO2 has unique characteristics and economical alternative material for transparent conductivity oxide thin films compared with other materials. In this study, titanium (Ti) has been used as a target while argon (Ar) and oxygen (O22</subthin films has been measured by using a calibrated I-V meter. On the other hand, the transparency, microstructure and component of TiO2 thin films have been investigated respectively by using UV-VIS spectrophotometer, XRD and SEM (EDX). The thickness of TiO2 films, the grain size and the band gap have been also successfully estimated. As a result, the conductivity of films increased for Dt at 1 hour to 3.5 hours and decreased for Dt at 4 hours. It means that the optimum Dt was at about 3.5 hours. It may be related to the thickness (structures) of the films. In addition, the thickness and grain size increased by increasing Dt, while the band gap decreased when the film structure changed from non-crystalline structure to crystalizing structure.


Sign in / Sign up

Export Citation Format

Share Document