scholarly journals Biochar-Supported BiOx for Effective Electrosynthesis of Formic Acid from Carbon Dioxide Reduction

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 363
Author(s):  
Juqin Zeng ◽  
Pravin Jagdale ◽  
Mirtha A. O. Lourenço ◽  
M. Amin Farkhondehfal ◽  
Daniele Sassone ◽  
...  

The electrochemical reduction of carbon dioxide (CO2) to value-added chemicals and fuels has attracted worldwide interest for its potential to address various contemporary global issues such as CO2-related climate change, the earth’s carbon deficit and the energy crisis. In the development of this technology, many efforts have been focused on the design of inexpensive, eco-friendly and effective catalysts. In this work, a bismuth (Bi)-based material was simply synthesized via a scalable method and fully characterized by physical, chemical and electrochemical techniques. The catalyst material consisted of Bi/Bi2O3 nanoparticles and a biochar prevenient from the pyrolysis of brewed coffee waste. It was observed that the surface of the biochar was thoroughly decorated with nanoparticles. Due to its uniform surface, the biochar–BiOx electrode demonstrated good selectivity for CO2 reduction, showing a faradaic efficiency of more than 90% for CO and HCOOH formation in a wide potential range. Particularly, the selectivity for HCOOH reached more than 80% from −0.9 V to −1.3 V vs the reversible hydrogen electrode and peaks at 87%. Besides the selectivity, the production rate of HCOOH also achieved significant values with a maximum of 59.6 mg cm−2 h−1, implying a good application potential for biochar–BiOx material in the conversion of CO2 to HCOOH.

Author(s):  
Rajasekaran Elakkiya ◽  
Govindhan Maduraiveeran

Design of high-performance and Earth-abundant electrocatalysts for electrochemical carbon dioxide (CO2) reduction reaction (CO2RR) into fuels and value-added chemicals offers an emergent pathway for environment and energy sustainable concerns. Herein,...


Author(s):  
Chuqian Xiao ◽  
Ling Cheng ◽  
Yating Wang ◽  
Jinze Liu ◽  
Rongzhen Chen ◽  
...  

Anodic selective electro‐oxidation of methanol paring with cathodic carbon dioxide (CO2) reduction is regarded as a promising strategy to generate value added formate product. We firstly design a 3D‐assembled NiCo...


Catalysts ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 413 ◽  
Author(s):  
Silvia Mena ◽  
Iluminada Gallardo ◽  
Gonzalo Guirado

Carbon dioxide (CO2) is a known greenhouse gas, and is the most important contributor to global warming. Therefore, one of the main challenges is to either eliminate or reuse it through the synthesis of value-added products, such as carboxylated derivatives. One of the most promising approaches for activating, capturing, and valorizing CO2 is the use of electrochemical techniques. In the current manuscript, we described an electrocarboxylation route for synthesizing 4-cyanobenzoic acid by valorizing CO2 through the synergistic use of electrochemical techniques (“green technology”) and ionic liquids (ILs) (“green solvents”)—two of the major entries in the general green chemistry tool kit. Moreover, the use of silver cathodes and ILs enabled the electrochemical potential applied to be reduced by more than 0.4 V. The “green” synthesis of those derivatives would provide a suitable environmentally friendly process for the design of plasticizers based on phthalate derivatives.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6962
Author(s):  
Sulafa Abdalmageed Saadaldeen Mohammed ◽  
Wan Zaireen Nisa Yahya ◽  
Mohamad Azmi Bustam ◽  
Md Golam Kibria

The electrochemical reduction of carbon dioxide (CO2ER) is amongst one the most promising technologies to reduce greenhouse gas emissions since carbon dioxide (CO2) can be converted to value-added products. Moreover, the possibility of using a renewable source of energy makes this process environmentally compelling. CO2ER in ionic liquids (ILs) has recently attracted attention due to its unique properties in reducing overpotential and raising faradaic efficiency. The current literature on CO2ER mainly reports on the effect of structures, physical and chemical interactions, acidity, and the electrode–electrolyte interface region on the reaction mechanism. However, in this work, new insights are presented for the CO2ER reaction mechanism that are based on the molecular interactions of the ILs and their physicochemical properties. This new insight will open possibilities for the utilization of new types of ionic liquids. Additionally, the roles of anions, cations, and the electrodes in the CO2ER reactions are also reviewed.


Author(s):  
Pooja Srivastava

Despite its life-threatening long term effects, the continuous increase of carbon dioxide (CO2) in the environment requires immediate actions to control the accelerating climate change. An appealing solution to this problem is to utilize CO2 as feedstock to generate useful chemicals, e.g., fuel, hydrocarbons, and valuable chemicals. The chemical inertness of CO2 needs considerably large energy for its conversion into useful chemicals. Therefore, CO2 reduction reaction requires an effective catalyst for its conversion into fuel (methanol, methane) and industrial chemicals (syngas, formic acid). Recently, two-dimensional layers of early transition metal carbides and nitrides, called MXene, have shown potential for catalysis due to its exposed transition metal sites, and mechanical and chemical stability at high temperatures. Herein, the author presents the MXene as a potential heterogeneous catalyst for the CO2 reduction reaction (CRR), and the future scope in this currently developing field.


Author(s):  
Ping She ◽  
Buyuan Guan ◽  
Jiyao Sheng ◽  
Yuanyuan Qi ◽  
Guanyu Qiao ◽  
...  

Photocatalytic carbon dioxide (CO2) reduction (PCR) into syngas is one of the sustainable approaches for recycling CO2 into value-added chemical feedstock. However, the PCR efficiency is often limited by the...


Nanoscale ◽  
2021 ◽  
Author(s):  
Wei Shao ◽  
Xiaodong Zhang

Carbon dioxide (CO2) from the excessive consumption of fossil fuels has exhibited a huge threat to the planet’s ecosystem. Electrocatalytic CO2 reduction into value-added chemicals have been regarded as a...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ji-Yong Kim ◽  
Deokgi Hong ◽  
Jae-Chan Lee ◽  
Hyoung Gyun Kim ◽  
Sungwoo Lee ◽  
...  

AbstractFor steady electroconversion to value-added chemical products with high efficiency, electrocatalyst reconstruction during electrochemical reactions is a critical issue in catalyst design strategies. Here, we report a reconstruction-immunized catalyst system in which Cu nanoparticles are protected by a quasi-graphitic C shell. This C shell epitaxially grew on Cu with quasi-graphitic bonding via a gas–solid reaction governed by the CO (g) - CO2 (g) - C (s) equilibrium. The quasi-graphitic C shell-coated Cu was stable during the CO2 reduction reaction and provided a platform for rational material design. C2+ product selectivity could be additionally improved by doping p-block elements. These elements modulated the electronic structure of the Cu surface and its binding properties, which can affect the intermediate binding and CO dimerization barrier. B-modified Cu attained a 68.1% Faradaic efficiency for C2H4 at −0.55 V (vs RHE) and a C2H4 cathodic power conversion efficiency of 44.0%. In the case of N-modified Cu, an improved C2+ selectivity of 82.3% at a partial current density of 329.2 mA/cm2 was acquired. Quasi-graphitic C shells, which enable surface stabilization and inner element doping, can realize stable CO2-to-C2H4 conversion over 180 h and allow practical application of electrocatalysts for renewable energy conversion.


Author(s):  
Dui Ma ◽  
Ting Jin ◽  
Keyu Xie ◽  
Haitao Huang

Converting CO2 into value-added fuels or chemical feedstocks through electrochemical reduction is one of the several promising avenues to reduce atmospheric carbon dioxide levels and alleviate global warming. This approach...


2018 ◽  
Vol 9 (11) ◽  
pp. 2952-2960 ◽  
Author(s):  
Eva M. Nichols ◽  
Jeffrey S. Derrick ◽  
Sepand K. Nistanaki ◽  
Peter T. Smith ◽  
Christopher J. Chang

The development of catalysts for electrochemical reduction of carbon dioxide offers an attractive approach to transforming this greenhouse gas into value-added carbon products with sustainable energy input.


Sign in / Sign up

Export Citation Format

Share Document