scholarly journals Predicting Depression in Community Dwellers Using a Machine Learning Algorithm

Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1429
Author(s):  
Seo-Eun Cho ◽  
Zong Woo Geem ◽  
Kyoung-Sae Na

Depression is one of the leading causes of disability worldwide. Given the socioeconomic burden of depression, appropriate depression screening for community dwellers is necessary. We used data from the 2014 and 2016 Korea National Health and Nutrition Examination Surveys. The 2014 dataset was used as a training set, whereas the 2016 dataset was used as the hold-out test set. The synthetic minority oversampling technique (SMOTE) was used to control for class imbalances between the depression and non-depression groups in the 2014 dataset. The least absolute shrinkage and selection operator (LASSO) was used for feature reduction and classifiers in the final model. Data obtained from 9488 participants were used for the machine learning process. The depression group had poorer socioeconomic, health, functional, and biological measures than the non-depression group. From the initial 37 variables, 13 were selected using LASSO. All performance measures were calculated based on the raw 2016 dataset without the SMOTE. The area under the receiver operating characteristic curve and overall accuracy in the hold-out test set were 0.903 and 0.828, respectively. Perceived stress had the strongest influence on the classifying model for depression. LASSO can be practically applied for depression screening of community dwellers with a few variables. Future studies are needed to develop a more efficient and accurate classification model for depression.

2020 ◽  
Vol 14 ◽  
Author(s):  
Wenming Liu ◽  
Xiao Zhang ◽  
Yuting Qiao ◽  
Yanhui Cai ◽  
Hong Yin ◽  
...  

Schizophrenia (SCZ) is an inherited disease, with the familial risk being among the most important factors when evaluating an individual’s risk for SCZ. However, robust imaging biomarkers for the disease that can be used for diagnosis and determination of the prognosis are lacking. Here, we explore the potential of functional connectivity (FC) for use as a biomarker for the early detection of high-risk first-degree relatives (FDRs). Thirty-eight first-episode SCZ patients, 38 healthy controls (HCs), and 33 FDRs were scanned using resting-state functional magnetic resonance imaging. The subjects’ brains were parcellated into 200 regions using the Craddock atlas, and the FC between each pair of regions was used as a classification feature. Multivariate pattern analysis using leave-one-out cross-validation achieved a correct classification rate of 88.15% [sensitivity 84.06%, specificity 92.18%, and area under the receiver operating characteristic curve (AUC) 0.93] for differentiating SCZ patients from HCs. FC located within the default mode, frontal-parietal, auditory, and sensorimotor networks contributed mostly to the accurate classification. The FC patterns of each FDR were input into each classification model as test data to obtain a corresponding prediction label (a total of 76 individual classification scores), and the averaged individual classification score was then used as a robust measure to characterize whether each FDR showed an SCZ-type or HC-type FC pattern. A significant negative correlation was found between the average classification scores of the FDRs and their semantic fluency scores. These findings suggest that FC combined with a machine learning algorithm could help to predict whether FDRs are likely to show an SCZ-specific or HC-specific FC pattern.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2556
Author(s):  
Liyang Wang ◽  
Yao Mu ◽  
Jing Zhao ◽  
Xiaoya Wang ◽  
Huilian Che

The clinical symptoms of prediabetes are mild and easy to overlook, but prediabetes may develop into diabetes if early intervention is not performed. In this study, a deep learning model—referred to as IGRNet—is developed to effectively detect and diagnose prediabetes in a non-invasive, real-time manner using a 12-lead electrocardiogram (ECG) lasting 5 s. After searching for an appropriate activation function, we compared two mainstream deep neural networks (AlexNet and GoogLeNet) and three traditional machine learning algorithms to verify the superiority of our method. The diagnostic accuracy of IGRNet is 0.781, and the area under the receiver operating characteristic curve (AUC) is 0.777 after testing on the independent test set including mixed group. Furthermore, the accuracy and AUC are 0.856 and 0.825, respectively, in the normal-weight-range test set. The experimental results indicate that IGRNet diagnoses prediabetes with high accuracy using ECGs, outperforming existing other machine learning methods; this suggests its potential for application in clinical practice as a non-invasive, prediabetes diagnosis technology.


Lung cancer is one of the diseases which has a high mortality. If the condition is detected earlier, then it is easier to reduce the mortality rate. This lung cancer has caused more deaths in the world than any other cancer. The main objective is to predict lung cancer using a machine learning algorithm. Several computer-aided systems have been designed to reduce the mortality rate due to lung cancer. Machine learning is a promising tool to predict lung cancer in its early phase or stage, where the features of images are trained using a classification model. Generally, machine learning is used to have a good prediction, but in some models, due to lack of efficient feature extraction value, the training has not been done more effectively; hence the predictions are poor. In order to overcome this limitation, the proposed covariant texture model utilizing the steerable Riesz wavelets feature extraction technique to increase the effectiveness of training via the Random Forest algorithm. In this proposed model, the RF algorithm is employed to predict whether the nodule in the image is benign or malignant ii) to find the level of severity (1 to 5), if it is a malignant nodule. Our experiment result can be used as a tool to support the diagnosis and to analyze at an earlier stage of cancer to cure it.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 6538-6538
Author(s):  
Ravi Bharat Parikh ◽  
Aymen Elfiky ◽  
Maximilian J. Pany ◽  
Ziad Obermeyer

6538 Background: Patients who die soon after starting chemotherapy incur symptoms and financial costs without survival benefit. Prognostic uncertainty may contribute to increasing chemotherapy use near the end of life, but few prognostic aids exist to guide physicians and patients in the decision to initiate chemotherapy. Methods: We obtained all electronic health record (EHR) data from 2004-14 from a large national cancer center, linked to Social Security data to determine date of death. Using EHR data before treatment initiation, we created a machine learning (ML) model to predict 180-day mortality from the start of chemotherapy. We derived the model using data from 2004-11 and report predictive performance on data from 2012-14. Results: 26,946 patients initiated 51,774 discrete chemotherapy regimens over the study period; 49% received multiple lines of chemotherapy. The most common cancers were breast (23.6%), colorectal (17.6%), and lung (16.6%). 18.4% of patients died within 180 days after chemotherapy initiation. Model predictions were used to rank patients in the validation cohort by predicted risk. Patients in the highest decile of predicted risk had a 180-day mortality of 74.8%, vs. 0.2% in the lowest decile (area under the receiver-operating characteristic curve [AUC] 0.87). Predictions were accurate for patients with metastatic disease (AUC 0.85) and for individual primary cancers and chemotherapy regimens—including experimental regimens not present in the derivation sample. Model predictions were valid for 30- and 90-day mortality (AUC 0.94 and 0.89, respectively). ML predictions outperformed regimen-based mortality estimates from randomized trials (RT) (AUC 0.77 [ML] vs. 0.56 [RT]), and National Cancer Institute Surveillance, Epidemiology, and End Results Program (SEER) estimates (AUC 0.81 [ML] vs. 0.40 [SEER]). Conclusions: Using EHR data from a single cancer center, we derived a machine learning algorithm that accurately predicted short-term mortality after chemotherapy initiation. Further research is necessary to determine applications of this algorithm in clinical settings and whether this tool can improve shared decision making leading up to chemotherapy initiation.


Ethiopia is the leading producer of chickpea in Africa and among the top ten most important producers of chickpea in the world. Debre Zeit Agriculture Research Center is a research center in Ethiopia which is mandated for the improvement of chickpea and other crops. Genome enabled prediction technologies trying to transform the classification of chickpea types and upgrading the existing identification paradigm.Current state of the identification of chickpea types in Ethiopia still sticks to a manual. Domain experts tried to recognize every chickpea type, the way and efficiency of identifying each chickpea types mainly depend on the skills and experience of experts in the domain area and this frequently causes error and sometimes inaccurate. Most of the classification and identification of crops researches were done outside Ethiopia; for local and emerging varieties, there is a need to design classification model that assists selection mechanisms of chickpea and even accuracy of an existing algorithm should be verified and optimized. The main aim of this study is to design chickpea type classification model using machine learning algorithm that classify chickpea types. This research work has a total of 8303 records with 8 features and 80% for training and 20% for testing were used. Data preprocessing were done to prepare the dataset for experiments. ANN, SVM and DT were used to build the model. For evaluating the performance of the model confusion matrix with Accuracy, Recall and Precision were used. The experimental results show that the best-performed algorithms were decision tree and achieve 97.5% accuracy. After the evaluation of results found in this research work, agriculture research centers and companies have benefited. The model of chickpea type classification will be applied in Debre Zeit agriculture research center in Ethiopia as a base to support the experts during chickpea type identification process. In addition it enables the expertise to save time, effort and cost with the support of the identification model. Moreover, this research can also be used as a corner stone in the area and will be referred by future researchers in the domain area.


2021 ◽  
Author(s):  
Marc Raphael ◽  
Michael Robitaille ◽  
Jeff Byers ◽  
Joseph Christodoulides

Abstract Machine learning algorithms hold the promise of greatly improving live cell image analysis by way of (1) analyzing far more imagery than can be achieved by more traditional manual approaches and (2) by eliminating the subjective nature of researchers and diagnosticians selecting the cells or cell features to be included in the analyzed data set. Currently, however, even the most sophisticated model based or machine learning algorithms require user supervision, meaning the subjectivity problem is not removed but rather incorporated into the algorithm’s initial training steps and then repeatedly applied to the imagery. To address this roadblock, we have developed a self-supervised machine learning algorithm that recursively trains itself directly from the live cell imagery data, thus providing objective segmentation and quantification. The approach incorporates an optical flow algorithm component to self-label cell and background pixels for training, followed by the extraction of additional feature vectors for the automated generation of a cell/background classification model. Because it is self-trained, the software has no user-adjustable parameters and does not require curated training imagery. The algorithm was applied to automatically segment cells from their background for a variety of cell types and five commonly used imaging modalities - fluorescence, phase contrast, differential interference contrast (DIC), transmitted light and interference reflection microscopy (IRM). The approach is broadly applicable in that it enables completely automated cell segmentation for long-term live cell phenotyping applications, regardless of the input imagery’s optical modality, magnification or cell type.


2021 ◽  
Author(s):  
Michael C. Robitaille ◽  
Jeff M. Byers ◽  
Joseph A. Christodoulides ◽  
Marc P. Raphael

Machine learning algorithms hold the promise of greatly improving live cell image analysis by way of (1) analyzing far more imagery than can be achieved by more traditional manual approaches and (2) by eliminating the subjective nature of researchers and diagnosticians selecting the cells or cell features to be included in the analyzed data set. Currently, however, even the most sophisticated model based or machine learning algorithms require user supervision, meaning the subjectivity problem is not removed but rather incorporated into the algorithm's initial training steps and then repeatedly applied to the imagery. To address this roadblock, we have developed a self-supervised machine learning algorithm that recursively trains itself directly from the live cell imagery data, thus providing objective segmentation and quantification. The approach incorporates an optical flow algorithm component to self-label cell and background pixels for training, followed by the extraction of additional feature vectors for the automated generation of a cell/background classification model. Because it is self-trained, the software has no user-adjustable parameters and does not require curated training imagery. The algorithm was applied to automatically segment cells from their background for a variety of cell types and five commonly used imaging modalities - fluorescence, phase contrast, differential interference contrast (DIC), transmitted light and interference reflection microscopy (IRM). The approach is broadly applicable in that it enables completely automated cell segmentation for long-term live cell phenotyping applications, regardless of the input imagery's optical modality, magnification or cell type.


2020 ◽  
pp. bmjspcare-2020-002602 ◽  
Author(s):  
Prathamesh Parchure ◽  
Himanshu Joshi ◽  
Kavita Dharmarajan ◽  
Robert Freeman ◽  
David L Reich ◽  
...  

ObjectivesTo develop and validate a model for prediction of near-term in-hospital mortality among patients with COVID-19 by application of a machine learning (ML) algorithm on time-series inpatient data from electronic health records.MethodsA cohort comprised of 567 patients with COVID-19 at a large acute care healthcare system between 10 February 2020 and 7 April 2020 observed until either death or discharge. Random forest (RF) model was developed on randomly drawn 70% of the cohort (training set) and its performance was evaluated on the rest of 30% (the test set). The outcome variable was in-hospital mortality within 20–84 hours from the time of prediction. Input features included patients’ vital signs, laboratory data and ECG results.ResultsPatients had a median age of 60.2 years (IQR 26.2 years); 54.1% were men. In-hospital mortality rate was 17.0% and overall median time to death was 6.5 days (range 1.3–23.0 days). In the test set, the RF classifier yielded a sensitivity of 87.8% (95% CI: 78.2% to 94.3%), specificity of 60.6% (95% CI: 55.2% to 65.8%), accuracy of 65.5% (95% CI: 60.7% to 70.0%), area under the receiver operating characteristic curve of 85.5% (95% CI: 80.8% to 90.2%) and area under the precision recall curve of 64.4% (95% CI: 53.5% to 75.3%).ConclusionsOur ML-based approach can be used to analyse electronic health record data and reliably predict near-term mortality prediction. Using such a model in hospitals could help improve care, thereby better aligning clinical decisions with prognosis in critically ill patients with COVID-19.


Sign in / Sign up

Export Citation Format

Share Document