scholarly journals Optical and pH-Responsive Nanocomposite Film for Food Packaging Application

Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 28
Author(s):  
Nedal Abu-Thabit ◽  
Yunusa Umar ◽  
Zakariya Sadique ◽  
Elaref Ratemi ◽  
Ayman Ahmad ◽  
...  

In this study, a biocompatible and non-toxic pH-responsive composite film was prepared for food packaging application. The films are composed from polyvinyl alcohol as the main polymeric matrix, nanoclay as a reinforcing component, and red cabbage extract as a non-toxic indicator. The prepared films showed lower water uptake values when the amount of nanoclay was increased up to 25%. It was observed that the films become brittle at high loading of nanoclay (40%). The prepared films exhibited color change in alkaline and acidic medium due to the presence of red cabbage extract, which turned pinkish in acidic medium and greenish in an alkaline environment. The prepared films were characterized by FTIR and visible spectroscopy. The maximum absorption in acidic medium was (λmax = 527 nm), while a red-shift occurred in the alkaline medium (λmax = 614 nm). Future work will focus on the crosslinking of the prepared films to improve their mechanical properties.

Author(s):  
Hoang-Linh Nguyen ◽  
Zahid Hanif ◽  
Seul-A. Park ◽  
Bong Gill Choi ◽  
Thang Hong Tran ◽  
...  

Herein, we introduce a boron nitride nanosheet (BNNS)-reinforced cellulose nanofiber (CNF) film as a sustainable oxygen barrier film that can potentially be applied in food packaging. Most of commodity plastics are oxygen-permeable. CNF exhibits an ideal oxygen transmittance rate (OTR) of <1 cc/m2/day in highly controlled conditions. A CNF film typically fabricated by the air drying of a CNF aqueous solution reveals an OTR of 19.08 cc/m2/day. The addition of 0-5 wt% BNNS to the CNF dispersion before drying results in a composite film with highly improved OTR, 4.7 cc/m2/day, which is sufficient for meat and cheese packaging. BNNS as a 2D nanomaterial increases the pathway of oxygen gas and reduces the chances of pin-hole formation during film fabrication involving water drying. In addition, BNNS improves the mechanical properties of the CNF films (Young’s modulus and tensile strength) without significant elongation reductions, probably due to the good miscibility of CNF and BNNS in the aqueous solution. BNNS addition also produces negligible color change, which is important for film aesthetics. An in vitro cell experiment was performed to reveal the low cytotoxicity of the CNF/BNNS composite. This composite film has great potential as a sustainable high-performance food packaging material.


2019 ◽  
Vol 8 (4) ◽  
pp. 6798-6802

Corn starch, chitosan and red cabbage extract act as natural pH indicator to determine fruit spoilage by developing pH sensitive film and coating as the color changes based on pH of fruit. The film color changed from pink to purple and brownish with the changes of pH. pH indicator film and coating were assessed for their physical, chemical, mechanical and biological properties. The stability of the pigment was evaluated for 4 days with the presence and absence of light and with or without cooling effects. The film incorporated with red cabbage extract proven to have higher stability when stored at room temperature with the exposure to light. It also exhibits better color stability when kept under cold temperature in comparison to room temperature.


2012 ◽  
Vol 488-489 ◽  
pp. 919-922 ◽  
Author(s):  
Sarinthip Thanakkasaranee ◽  
Arjaree Pradittham ◽  
Duangduen Atong ◽  
Chiravoot Pechyen

In the present work, nano-silica was used in preparing LLDPE/nano-silica as an outer layer film for LLDPE reinforced nano-silica/LDPE/LLDPE multilayer film for microwavable packaging materials in future work. Thus, the objective of this work was studied the optimal of modified nano-silica loading into LLDPE film on barrier and mechanical properties. The experiments were divided into 2 main steps: surface treatment of nano-silica with vinyltriethoxysilane by ultrasonic agitation, and preparation of linear low density polyethylene film reinforced with untreated and treated nano-silica which different silica quantities are 1, 3, and 5 phr by blown film extruder. And then the surface morphology of films was examined by SEM. The properties of the film were analysis, oxygen transmission rate of film was characterized by OTR, water vapor transmission rate of film was characterized by WVTR, and tensile properties (tensile strength, % elongation and modulus) of films were examined by universal testing machine. Results indicated that the LLDPE loaded with 1 phr of nano-silica treated with vinyltriethoxysilane had better tensile strength and % elongation than at 3 and 5 phr of treated and untreated nano-silica.


Author(s):  
N.W. Makgobelele ◽  
R.K.K. Mbaya ◽  
J.R. Bunt ◽  
N.T. Leokaoke ◽  
H.W.J.P. Neomagus

SYNOPSIS Silicon Smelters consumes more than 80000 t/a of wood-derived charcoal as carbonaceous reductant in the production of silicon metal. More than 10% of this material is discarded as fines (<6 mm) generated due to abrasion during processing. Charcoal fine residues (<650 μm) and polyvinyl alcohol (PVA) binder were used in this study to produce mechanically strong charcoal briquettes for metallurgical application as carbonaceous reductant. The PVA binder was added in mass percentages of 1, 3, and 5 wt% to the charcoal fines. The compressive strength, abrasion resistance index (ARI), drop shatter resistance (SRI), and water resistance index (WRI) were measured as functions of curing for up to 7 days under atmospheric conditions, and the results compared with metallurgical grade coarse charcoal. The ash content of the produced briquettes was found to be high (6.6-8.0%) compared with the coarse charcoal (1-3%). The 3 and 5 wt% PVA-bound briquettes were found to be the strongest, with compressive strengths of 40 and 115 kg/cm2 respectively, with WRI values of 75 and 73% respectively. The produced briquettes were found to have lower ARI and SRI values compared to the coarse charcoal. Future work should include beneficiation of the fine charcoal discards prior to briquetting, and an increase in binder addition to above 6 wt% to improve the ARI and SRIn. Keywords: wood charcoal, fines, briquettes, reductant, polyvinyl alcohol binder, compressive strength, water resistance, curing time.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3043
Author(s):  
Isabel Bascón-Villegas ◽  
Mónica Sánchez-Gutiérrez ◽  
Fernando Pérez-Rodríguez ◽  
Eduardo Espinosa ◽  
Alejandro Rodríguez

Films formulated with polyvinyl alcohol (PVA) (synthetic biopolymer) were reinforced with lignocellulose nanofibres (LCNF) from residues of vegetable production (natural biopolymer). The LCNF were obtained by mechanical and chemical pre-treatment by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) and added to the polyvinyl alcohol (polymer matrix) with the aim of improving the properties of the film for use in food packaging. The mechanical properties, crystallinity, thermal resistance, chemical structure, antioxidant activity, water barrier properties and optical properties (transparency and UV barrier), were evaluated. In general, with the addition of LCNF, an improvement in the studied properties of the films was observed. In terms of mechanical properties, the films reinforced with 7% LCNF TEMPO showed the best results for tensile strength, Young’s modulus and elongation at break. At the same LCNF proportion, the thermal stability (Tmax) increased between 5.5% and 10.8%, and the antioxidant activity increased between 90.9% and 191.8%, depending on the raw material and the pre-treatment used to obtain the different LCNF. Finally, a large increase in UV blocking was also observed with the addition of 7% LCNF. In particular, the films with 7% of eggplant LCNF showed higher performance for Young’s modulus, elongation at break, thermal stability and UV barrier. Overall, results demonstrated that the use of LCNF generated from agricultural residues represents a suitable bioeconomy approach able to enhance film properties for its application in the development of more sustainable and eco-friendly food packaging systems.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 228
Author(s):  
Swarup Roy ◽  
Lindong Zhai ◽  
Hyun Chan Kim ◽  
Duc Hoa Pham ◽  
Hussein Alrobei ◽  
...  

A chitosan-based nanocomposite film with tannic acid (TA) as a cross-linker and titanium dioxide nanoparticles (TiO2) as a reinforcing agent was developed with a solution casting technique. TA and TiO2 are biocompatible with chitosan, and this paper studied the synergistic effect of the cross-linker and the reinforcing agent. The addition of TA enhanced the ultraviolet blocking and mechanical properties of the chitosan-based nanocomposite film. The reinforcement of TiO2 in chitosan/TA further improved the nanocomposite film’s mechanical properties compared to the neat chitosan or chitosan/TA film. The thermal stability of the chitosan-based nanocomposite film was slightly enhanced, whereas the swelling ratio decreased. Interestingly, its water vapor barrier property was also significantly increased. The developed chitosan-based nanocomposite film showed potent antioxidant activity, and it is promising for active food packaging.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2569
Author(s):  
Mia Kurek ◽  
Nasreddine Benbettaieb ◽  
Mario Ščetar ◽  
Eliot Chaudy ◽  
Maja Repajić ◽  
...  

Chitosan and pectin films were enriched with blackcurrant pomace powder (10 and 20% (w/w)), as bio-based material, to minimize food production losses and to increase the functional properties of produced films aimed at food coatings and wrappers. Water vapor permeability of active films increased up to 25%, moisture content for 27% in pectin-based ones, but water solubility was not significantly modified. Mechanical properties (tensile strength, elongation at break and Young’s modulus) were mainly decreased due to the residual insoluble particles present in blackcurrant waste. FTIR analysis showed no significant changes between the film samples. The degradation temperatures, determined by DSC, were reduced by 18 °C for chitosan-based samples and of 32 °C lower for the pectin-based samples with blackcurrant powder, indicating a disturbance in polymer stability. The antioxidant activity of active films was increased up to 30-fold. Lightness and redness of dry films significantly changed depending on the polymer type. Significant color changes, especially in chitosan film formulations, were observed after exposure to different pH buffers. This effect is further explored in formulations that were used as color change indicators for intelligent biopackaging.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1502
Author(s):  
Eliezer Velásquez ◽  
Sebastián Espinoza ◽  
Ximena Valenzuela ◽  
Luan Garrido ◽  
María José Galotto ◽  
...  

The deterioration of the physical–mechanical properties and loss of the chemical safety of plastics after consumption are topics of concern for food packaging applications. Incorporating nanoclays is an alternative to improve the performance of recycled plastics. However, properties and overall migration from polymer/clay nanocomposites to food require to be evaluated case-by-case. This work aimed to investigate the effect of organic modifier types of clays on the structural, thermal and mechanical properties and the overall migration of nanocomposites based on 50/50 virgin and recycled post-consumer polypropylene blend (VPP/RPP) and organoclays for food packaging applications. The clay with the most hydrophobic organic modifier caused higher thermal stability of the nanocomposites and greater intercalation of polypropylene between clay mineral layers but increased the overall migration to a fatty food simulant. This migration value was higher from the 50/50 VPP/RPP film than from VPP. Nonetheless, clays reduced the migration and even more when the clay had greater hydrophilicity because of lower interactions between the nanocomposite and the fatty simulant. Conversely, nanocomposites and VPP/RPP control films exhibited low migration values in the acid and non-acid food simulants. Regarding tensile parameters, elongation at break values of PP film significantly increased with RPP addition, but the incorporation of organoclays reduced its ductility to values closer to the VPP.


Sign in / Sign up

Export Citation Format

Share Document