scholarly journals Using Augmented Reality and Internet of Things for Control and Monitoring of Mechatronic Devices

Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1272
Author(s):  
Erich Stark ◽  
Erik Kučera ◽  
Oto Haffner ◽  
Peter Drahoš ◽  
Roman Leskovský

At present, computer networks are no longer used to connect just personal computers. Smaller devices can connect to them even at the level of individual sensors and actuators. This trend is due to the development of modern microcontrollers and singleboard computers which can be easily connected to the global Internet. The result is a new paradigm—the Internet of Things (IoT) as an integral part of the Industry 4.0; without it, the vision of the fourth industrial revolution would not be possible. In the field of digital factories it is a natural successor of the machine-to-machine (M2M) communication. Presently, mechatronic systems in IoT networks are controlled and monitored via industrial HMI (human-machine interface) panels, console, web or mobile applications. Using these conventional control and monitoring methods of mechatronic systems within IoT networks, this method may be fully satisfactory for smaller rooms. Since the list of devices fits on one screen, we can monitor the status and control these devices almost immediately. However, in the case of several rooms or buildings, which is the case of digital factories, ordinary ways of interacting with mechatronic systems become cumbersome. In such case, there is the possibility to apply advanced digital technologies such as extended (computer-generated) reality. Using these technologies, digital (computer-generated) objects can be inserted into the real world. The aim of this article is to describe design and implementation of a new method for control and monitoring of mechatronic systems connected to the IoT network using a selected segment of extended reality to create an innovative form of HMI.

2021 ◽  
Vol 309 ◽  
pp. 01209
Author(s):  
Manisha Gunturi

The new technology and concepts of IoT is gaining a lot of interest in the recent years. This technology aims at improving the\ quality and productivity in various domains. The Internet of Things (IoT) is about the use of sensors and smart devices and to utilize data collected by these embedded sensors and actuators for automation. The technology has proven its significance in many domains and is successfully being used in the various fields of civil engineering. The application of the IoT is paving its way towards smart and sustainable infrastructure. This paper proposes to contemplate the status of usage of IoT in Civil Engineering, its issues and difficulties.


2019 ◽  
Vol 2 (2) ◽  
pp. 210
Author(s):  
Sri Ratna Sulistiyanti ◽  
F.X. Arinto Setyawan ◽  
M. Komarudin ◽  
Warsono Warsono

AbstractA house is a gathering place for a family, where each family member has a different passion and busyness. If at any time a family member is traveling and wants to monitor and control conditions from a distance, an electronic device is used. One solution to determine the condition of home security at all times, an internet connection is needed by using the concept of the Internet of Things (IoT). IoT is a concept of using an internet network to transfer data or share information with certain applications. The IoT concept is one of the IR 4.0 based systems. In Indonesia, the system has not been widely implemented, especially for village areas. The purpose of this activity is to introduce the concept of IoT in a region as a system of monitoring and controlling homes. The method used is socialization and training of IoT-based smart home models. The system that is introduced is setting lights, monitoring gas (kitchen security), and monitoring using a camera. The results obtained were an increase in knowledge from 45.4% to 79%, and increased skills from 33% to 63%.Keywords: IoT, Village, Industrial Revolution 4.0.


2016 ◽  
Vol 44 (1) ◽  
pp. 110-124 ◽  
Author(s):  
Jooik Jung ◽  
Sejin Chun ◽  
Xiongnan Jin ◽  
Kyong-Ho Lee

Recent advances in the Internet of Things (IoT) have led to the rise of a new paradigm: Social Internet of Things (SIoT). However, the new paradigm, as inspired by the idea that smart objects will soon have a certain degree of social consciousness, is still in its infant state for several reasons. Most of the related works are far from embracing the social aspects of smart objects and the dynamicity of inter-object social relations. Furthermore, there is yet to be a coherent structure for organising and managing IoT objects that elicit social-like features. To fully understand how and to what extent these objects mimic the behaviours of humans, we first model SIoT by scrutinising the distinct characteristics and structural facets of human-centric social networks. To elaborate, we describe the process of profiling the IoT objects that become social and classify various inter-object social relationships. Afterwards, a novel discovery mechanism, which utilises our hypergraph-based overlay network model, is proposed. To test the feasibility of the proposed approach, we have performed several experiments on our smart home automation demo box built with various sensors and actuators.


2017 ◽  
pp. 226-237
Author(s):  
Bernhard Großwindhager ◽  
Astrid Rupp ◽  
Martin Tappler ◽  
Markus Tranninger ◽  
Samuel Weiser ◽  
...  

The Internet of Things (IoT) extends the Internet to include also wireless embedded computers that are often equipped with sensors and actuators to monitor and control their physical environment. The IoT is increasingly used for safety-critical applications such as smart factories or networked cars, where a failure of the IoT may lead to catastrophic consequences. The IoT is therefore in urgent need of dependability, where reliability, availability, and security properties can be guaranteed even in harsh environments (e.g., radio interference) and under deliberate attacks (e.g., exploiting side channels). In this paper we give an overview of recent research activities in the LEAD project “Dependable Internet of Things in Adverse Environments” towards a dependable IoT, specifically dependable wireless communication and localization using Ultra-Wide-Band technology, secure execution of real-time software, protocol testing and verification, and dependable networked control. We also present the TruckLab testbed, where our research results can be integrated and validated in a platooning use case. In this testbed, model trucks are automatically controlled to follow a lead truck.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Bambang Widagdo ◽  
Mochamad Rofik

The economic diversification concept gives hope for a country with rich natural resources to strengthen its economic basis. Thus industrial revolution era of 4.0 provides great opportunity to fasten the process. A study by McKensey in 2011 proved that the internet in the developing country contributes around 3.4% towards its GDP which means that the internet has become a new hope for the economy in the future. Indonesia is one of the countries that is attempting to maximize the role of the Internet of Things (IoT) for its economic growth.� The attempt has made the retail and tourism industries as the two main sectors to experience the significant effect of IoT. In the process of optimizing the IoT to support the economic growth, Indonesia faces several issues especially in the term of the internet network quality and its distribution, the inclusive access of financial access and the infrastructure


2018 ◽  
Vol 3 (1) ◽  
pp. 22-32 ◽  
Author(s):  
Ernest Ezema ◽  
Azizol Abdullah ◽  
Nor Fazlida Binti Mohd

The concept of the Internet of Things (IoT) has evolved over time. The introduction of the Internet of Things and Services into the manufacturing environment has ushered in a fourth industrial revolution: Industry 4.0. It is no doubt that the world is undergoing constant transformations that somehow change the trajectory and history of humanity. We can illustrate this with the first and second industrial revolutions and the information revolution. IoT is a paradigm based on the internet that comprises many interconnected technologies like RFID (Radio Frequency Identification) and WSAN (Wireless Sensor and Actor Networks) to exchange information. The current needs for better control, monitoring and management in many areas, and the ongoing research in this field, have originated the appearance and creation of multiple systems like smart-home, smart-city and smart-grid. The IoT services can have centralized or distributed architecture. The centralized approach provides is where central entities acquire, process, and provide information while the distributed architectures, is where entities at the edge of the network exchange information and collaborate with each other in a dynamic way. To understand the two approaches, it is necessary to know its advantages and disadvantages especially in terms of security and privacy issues. This paper shows that the distributed approach has various challenges that need to be solved. But also, various interesting properties and strengths. In this paper we present the main research challenges and the existing solutions in the field of IoT security, identifying open issues, the industrial revolution and suggesting some hints for future research.


Author(s):  
Rutvik Solanki

Abstract: Technological advancements such as the Internet of Things (IoT) and Artificial Intelligence (AI) are helping to boost the global agricultural sector as it is expected to grow by around seventy percent in the next two decades. There are sensor-based systems in place to keep track of the plants and the surrounding environment. This technology allows farmers to watch and control farm operations from afar, but it has a few limitations. For farmers, these technologies are prohibitively expensive and demand a high level of technological competence. Besides, Climate change has a significant impact on crops because increased temperatures and changes in precipitation patterns increase the likelihood of disease outbreaks, resulting in crop losses and potentially irreversible plant destruction. Because of recent advancements in IoT and Cloud Computing, new applications built on highly innovative and scalable service platforms are now being developed. The use of Internet of Things (IoT) solutions has enormous promise for improving the quality and safety of agricultural products. Precision farming's telemonitoring system relies heavily on Internet of Things (IoT) platforms; therefore, this article quickly reviews the most common IoT platforms used in precision agriculture, highlighting both their key benefits and drawbacks


Author(s):  
Itamir Barroca ◽  
Gibeon Aquino ◽  
Maria Alzete Lima

The high cost of healthcare services, the aging population and the increase of chronic disease is becoming a global concern. Several studies have indicated the need to minimize the process of hospitalization and the high cost of patient care. A promising trend in healthcare is to move the routines of medical checks from a hospital to the patient's home. Moreover, recent advances in microelectronics have boosted the advent of a revolutionary model involving systems and communication technology. This new paradigm, the Internet of Things (IoT), has a broad applicability in several areas, including healthcare. Based on this context, this chapter aims to describe a computer platform based on IoT for the remote monitoring of patients in critical condition. Furthermore, it is planned to approach the current advances and challenges of conceiving and developing a set of technology-centric, targeting issues relevant to underdeveloped countries, particularly in regards to Brazil's health infrastructure.


Author(s):  
Zelal Gültekin Kutlu

In this study, the periodical differences of industrial revolutions, which is one of the effects of technological developments in the industrial field, and the last stage of it are mentioned. With the latest industrial revolution called Industry 4.0, machines work in harmony with technology at every stage of industrial areas. This period, known as Industry 4.0 or the fourth industrial revolution, refers to the system in which the latest production technologies, automation systems, and the technologies that make up this system exchange data with each other. In addition to the information technologies and automation systems used in Industry 3.0, industrial production has gained a whole new dimension with the use of the internet. With internet networks, machines, operators, and robots now work in harmony. At this point, the concept of internet of objects becomes important. Therefore, another focus of the study is the concept of internet of objects. There are some assumptions about the uses, benefits, and future status of the internet of things.


Author(s):  
Fausto E. Jacome

Emerging technologies such as machine learning, the cloud, the internet of things (IoT), social web, mobility, robotics, and blockchain, among others, are powering a technological revolution in such a way that are transforming all human activities. These new technologies have generated creative ways of offering goods and services. Today's consumers demand in addition to quality, innovation, a real-time and ubiquitous service. In this context, what is the challenge that academy faces? What is the effect of these new technologies on the universities mission? What are people's expectations about academy in this new era? This chapter tries to get answers to these questions and explain how these emerging technologies are converting universities to lead society transformation to the digital age. Under this new paradigm, there are only two roads: innovate or perish. As might be expected universities are embracing these technologies for innovating themselves.


Sign in / Sign up

Export Citation Format

Share Document