scholarly journals Anisotropy in Thermal Recovery of Oil Shale—Part 1: Thermal Conductivity, Wave Velocity and Crack Propagation

Energies ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 77 ◽  
Author(s):  
◽  
◽  
◽  
Geosciences ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 337
Author(s):  
Hanane Sghiouri El Idrissi ◽  
Abderrahim Samaouali ◽  
Younes El Rhaffari ◽  
Salah El Alami ◽  
Yves Geraud

In this work, we study the variability of the lithological composition and organic matter content of samples were taken from the different layers M, X and Y of the Timahdit oil shale in Morocco, in order to experimentally analyze the impact of this variability on petrophysical measurements. The objective of this study is to predict the properties of the layers, including their thermal conductivity, thermal diffusivity, porosity and P and S wave velocities. The results of the study of the impact of the organic matter content of the samples on the petrophysical measurements show that, regardless of the organic matter content, thermal conductivity and diffusivity remain insensitive, while P and S wave velocities decrease linearly and porosity increases with increasing organic matter content. On the other hand, the study of the organic matter variability content is consistent with the velocity ratio, so can be used as an organic matter indicator of the layers. Conductivity and thermal diffusivity are almost invariant to the variability of the organic matter.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6054 ◽  
Author(s):  
Chi-Hyung Ahn ◽  
Dong-Ju Kim ◽  
Yong-Hoon Byun

The objective of this study is to develop a new vibration-free excavation method based on vermiculite expansion for rock cracking and to evaluate the performance of the heating system via elastic wave monitoring. Natural vermiculites expand rapidly in volume when heated above 800 °C. MgO powder is used to evenly transmit the surface temperature of a heater rod, which can attain high temperatures rapidly, to the vermiculites. The insertion direction of the heater rod greatly affects the expansion pressure. Three cuboid rock specimens are prepared and equipped with the heating system at different hole-to-face distances. Crack propagation is monitored by a pair of disk-shaped piezoelectric transducers. For short hole-to-face distances, the wave velocity and maximum amplitude rapidly decrease after certain time. For the greatest hole-to-face distance, the shear wave velocity remains constant during the test, while the maximum amplitude decreases after a certain time. The time taken for the velocity and amplitude of the shear waves to decrease reasonably corresponded to that taken for detectable crack propagation to occur on the surface of the rock specimen. The proposed method and materials may be useful from the viewpoints of rapid expansion, economy, and crack control.


2010 ◽  
Vol 45 (11) ◽  
pp. 1209-1216 ◽  
Author(s):  
A.M. Zihlif ◽  
Ziad Elimat ◽  
G. Ragosta

The thermal, viscoelastic, mechanical behavior of polymers filled with dispersed zeolite and oil shale is studied as a function of temperature, grain size, and filler concentration. It was found that the thermal conductivity of epoxy—zeolite composite increases with different zeolite grain sizes and takes a higher value in case of the 63 μm grain size composite. The observed enhancement in the thermal conductivity of zeolite composites correlates well with that of the electrical conductivity. The thermodynamic results exhibit a slight increase in the glass transition temperature of the polystyrene/oil shale composites, and shift in the observed relaxation peaks with increasing the oil shale content. The plastic deformation of PS/oil shale composites shows that the elastic modulus increases and the compressive yield stress decreases with oil shale content. The Eyring theory of yielding could predict the dependence of the yield stress on the applied strain rate. The predicted activation volume and activation energy showed dependence on the oil shale grains sizes and content.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Kyung Jae Lee

Abstract In the numerical simulations of thermal recovery for unconventional resources, reservoir models involve complex multicomponent-multiphase flow in non-isothermal conditions, where spatial heterogeneity necessitates the huge number of discretized elements. Proxy modeling approaches have been applied to efficiently approximate solutions of reservoir simulations in such complex problems. In this study, we apply machine learning technologies to the thermal recovery of unconventional resources, for the efficient computation and prediction of hydrocarbon production. We develop data-driven models applying artificial neural network (ANN) to predict hydrocarbon productions under heterogeneous and unknown properties of unconventional reservoirs. We study two different thermal recovery methods—expanding solvent steam-assisted gravity drainage for bitumen and in-situ upgrading of oil shale. We obtain training datasets by running high-fidelity simulation models for these two problems. As training datasets of ANN models, diverse input and output data of phase and component productions are generated, by considering heterogeneity and uncertainty. In the bitumen reservoirs, diverse permeability anisotropies are considered as unknown properties. Similarly, in the oil shale reservoirs, diverse kerogen decomposition kinetics are considered. The performance of data-driven models is evaluated with respect to the position of the test dataset. When the test data is inside of the boundary of training datasets, the developed data-driven models based on ANN reliably predict the cumulative productions at the end of the recovery processes. However, when the test data is at the boundary of training datasets, physical insight plays a significant role to provide a reliable performance of data-driven models.


2019 ◽  
Vol 219 (2) ◽  
pp. 1377-1394 ◽  
Author(s):  
S Jennings ◽  
D Hasterok ◽  
J Payne

SUMMARY Thermal conductivity is a physical parameter crucial to accurately estimating temperature and modelling thermally related processes within the lithosphere. Direct measurements are often impractical due to the high cost of comprehensive sampling or inaccessibility and thereby require indirect estimates. In this study, we report 340 new thermal conductivity measurements on igneous rocks spanning a wide range of compositions using an optical thermal conductivity scanning device. These are supplemented by a further 122 measurements from the literature. Using major element geochemistry and modal mineralogy, we produce broadly applicable empirical relationships between composition and thermal conductivity. Predictive models for thermal conductivity are developed using (in order of decreasing accuracy) major oxide composition, CIPW normative mineralogy and estimated modal mineralogy. Four common mixing relationships (arithmetic, geometric, square-root and harmonic) are tested and, while results are similar, the geometric model consistently produces the best fit. For our preferred model, $k_{\text{eff}} = \exp ( 1.72 \, C_{\text{SiO}_2} + 1.018 \, C_{\text{MgO}} - 3.652 \, C_{\text{Na}_2\text{O}} - 1.791 \, C_{\text{K}_2\text{O}})$, we find that SiO2 is the primary control on thermal conductivity with an RMS of 0.28 W m−1 K−1or ∼10 per cent. Estimates from normative mineralogy work to a similar degree but require a greater number of parameters, while forward and inverse modelling using estimated modal mineralogy produces less than satisfactory results owing to a number of complications. Using our model, we relate thermal conductivity to both P-wave velocity and density, revealing systematic trends across the compositional range. We determine that thermal conductivity can be calculated from P-wave velocity in the range 6–8 km s−1 to within 0.31 W m−1 K−1 using $k({V_p}) = 0.5822 \, V_p^2 - 8.263 \, V_p + 31.62$. This empirical model can be used to estimate thermal conductivity within the crust where direct sampling is impractical or simply not possible (e.g. at great depths). Our model represents an improved method for estimating lithospheric conductivity than present formulas which exist only for a limited range of compositions or are limited by infrequently measured parameters.


Geothermics ◽  
2015 ◽  
Vol 53 ◽  
pp. 255-269 ◽  
Author(s):  
Lionel Esteban ◽  
Lucas Pimienta ◽  
Joel Sarout ◽  
Claudio Delle Piane ◽  
Sebastien Haffen ◽  
...  

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Zhao Xia ◽  
Xiaoming Liu ◽  
Jiali Gu

The capillary rise of shallow mineralized groundwater can contribute to the salinization of the soil layers. The excessive salt amounts adversely affect soil physical and mechanical properties, as well as the heat transfer performance, all of which are key factors with regard to the design of geothermal-related earth structures such as geothermal energy piles (GEP), ground source heat pumps (GSHP), and earth-air tunnel heat exchangers (EATHE). Therefore, in this study, the thermal-mechanical properties of saline soils are systematically investigated. A series of thermal and mechanical response tests were carried out under different salinity conditions, and the shear wave velocity-stress behavior of saline soil was measured using a modified oedometric cell coupled with an anchored bender element pair. Experimental results showed that saline soils generally have higher dry density and lower optimum moisture content at higher salt contents. The shear strength of saline soil increased about 5% while the salt concentrations of bulk solution increased from 0 mol/kg to 6 mol/kg, and the shear wave velocity increased by 50% to 83% when the normal load increased from 12.5 kPa to 250 kPa for sodium chloride- (NaCl-) treated soil and 39% to 52% for calcium chloride- (CaCl2-) treated soil. In addition, the thermal conductivity decreased by 0.121 W m-1 K-1 for NaCl-treated soil and 0.129 W m-1 K-1 for CaCl2-treated soil on average when the salt concentration increased from 0 mol/kg to 6 mol/kg. Finally, an elastic shear modulus (G0) model and a thermal conductivity (K) model were formulated for saline soil for the first time, and the effectiveness and feasibility of the proposed models were validated by comparisons of the model predicted values and experimental data.


Sign in / Sign up

Export Citation Format

Share Document