scholarly journals Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Interactions with Groundwater Flow

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2353 ◽  
Author(s):  
Estanislao Pujades ◽  
Philippe Orban ◽  
Pierre Archambeau ◽  
Vasileios Kitsikoudis ◽  
Sebastien Erpicum ◽  
...  

Underground pumped-storage hydropower (UPSH) is a promising technology to manage the electricity production in flat regions. UPSH plants consist of an underground and surface reservoirs. The energy is stored by pumping water from the underground to the surface reservoir and is produced by discharging water from the surface to the underground reservoir. The underground reservoir can be drilled, but a more efficient alternative, considered here, consists in using an abandoned mine. Given that mines are rarely waterproofed, there are concerns about the consequences (on the efficiency and the environment) of water exchanges between the underground reservoir and the surrounding medium. This work investigates numerically such water exchanges and their consequences. Numerical models are based on a real abandoned mine located in Belgium (Martelange slate mine) that is considered as a potential site to construct an UPSH plant. The model integrates the geometrical complexity of the mine, adopts an operation scenario based on actual electricity prices, simulates the behavior of the system during one year and considers two realistic scenarios of initial conditions with the underground reservoir being either completely full or totally drained. The results show that (1) water exchanges may have important consequences in terms of efficiency and environmental impacts, (2) the influence of the initial conditions is only relevant during early times, and (3), an important factor controlling the water exchanges and their consequences may be the relative location of the natural piezometric head with respect the underground reservoir.

2018 ◽  
Vol 45 ◽  
pp. 51-56 ◽  
Author(s):  
Estanislao Pujades ◽  
Philippe Orban ◽  
Pierre Archambeau ◽  
Sebastien Erpicum ◽  
Alain Dassargues

Abstract. Underground Pumped Storage Hydropower (UPSH) using abandoned mines has been considered as a potential high capacity Energy Storage Systems. In UPSH plants, the excess of electricity is stored in the form of potential energy by pumping water from an underground reservoir (abandoned mine in this paper) to a surface reservoir, while electricity is produced (when the demand increases) discharging water from the surface into the underground reservoir. The main concerns may arise from the water exchanges occurring between the underground reservoir and the surrounding medium, which are relevant in terms of environmental impact and UPSH efficiency. Although the role of the water exchanges has been previously addressed, most studies are based on synthetic models. This work focuses on a real abandoned slate mine located in Martelange (Belgium). The effects of different rehabilitation works to prepare the mine as an underground reservoir are assessed in terms of groundwater exchanges and their associated consequences.


2018 ◽  
Vol 45 ◽  
pp. 45-49
Author(s):  
Estanislao Pujades ◽  
Anna Jurado ◽  
Philippe Orban ◽  
Alain Dassargues

Abstract. Underground pumped storage hydropower (UPSH) induces hydrochemical changes when water evolves to reach equilibrium with the atmosphere (in the surface reservoir) and with the surrounding medium (in the underground reservoir). These hydrochemical changes may impact the environment and the efficiency of the system (i.e., the UPSH plant), especially in coal mine environments where the presence of sulphide minerals is common. For this reason, it is needed to assess the variables that control the behavior of the system in order to establish criteria for the selection of abandoned mines to be used as underground reservoirs in future UPSH plants. Coupled hydro-chemical numerical models are used for investigating the influence of hydraulic parameters on the hydrochemical changes when pyrite is present in the surrounding medium. Results show the role of the hydraulic conductivity and the porosity on the system behavior, which is helpful for selecting those abandoned mines where the hydrochemical changes and their associated consequences will be less.


2020 ◽  
Vol 152 ◽  
pp. 02001
Author(s):  
Javier Menéndez ◽  
Jorge Loredo

Underground pumped storage hydropower (UPSH) plants may be an alternative to store subsurface energy with lower environmental impacts than conventional pumped storage hydropower (PSH) plants. Network of tunnels in closed mines (i.e. coal mines) could be used as water lower reservoir of UPSH plants. The amount of storable energy depends on the water mass and the net head between upper and lower reservoirs. Depending on the direction of the water flow rate, pumping or turbine modes may be used to produce or consume electrical energy. Filling and emptying processes during the operation stage in the underground reservoir are complicated due to the presence of two fluids (water and air) interacting inside the network of tunnels. This paper explores the underground reservoir during the operation stage considering a water flow rate of 55 m3s-1. Two-phase three dimensional CFD numerical models using Ansys Fluent have been developed in order to know the behaviour of the air flow on tunnels and ventilation shaft. Static pressure and air velocity have been analyzed in the simulations at the exit of the ventilation shaft as well as the junction zone between the ventilation shaft and the tunnels network. The results obtained show that a static pressure up to 8,600 Pa and air velocities up to 80 m s-1 could be reached in turbine mode considering a vent shaft with 1 m in diameter. The static pressure increases up to 258,000 Pa if a ventilation shaft of 0.5 m in diameter is considered.


2021 ◽  
Author(s):  
Estanislao Pujades

Underground Pumped Storage Hydropower (UPSH) is a potential alternative to manage electricity production in flat regions. UPSH plants will interact with the surrounding porous medium through exchanges of groundwater. These exchanges may impact the surrounding aquifers, but they may also influence the efficiency of the pumps and turbines because affecting the head difference between the reservoirs. Despite the relevance for an accurate efficiency assessment, the influence of the groundwater exchanges has not been previously addressed.A numerical study of a synthetic case is presented to highlight the importance of considering the groundwater exchanges with the surrounding porous medium. The general methodology is designed in order to be further applied in the decision making of future UPSH plants introducing each case specific complexity. The underground reservoir of a hypothetical UPSH plant, which consists in an open pit mine, is considered and modelled together with the surrounding porous medium. Several scenarios with different characteristics are simulated and their results are compared in terms of (1) head difference between the upper and lower reservoirs and (2) efficiency by considering the theoretical performance curves of a pump and a turbine. The results show that the efficiency is improved when the groundwater exchanges increase. Thus, the highest efficiencies will be reached when (1) the underground reservoir is located in a transmissive porous medium and (2) the walls of the open pit mine do not constrain the groundwater exchanges (they are not waterproofed). However, a compromise must be found because the characteristics that increase the efficiency also increase the environmental impacts. Meaningful and reliable results are computed in relation to the characteristics of the intermittent and expected stops of UPSH plants. The frequency of pumping and injection must be considered to properly configure the pumps and turbines of future UPSH plants. If not, pumps and turbines could operate far from their best efficiency conditions.


2021 ◽  
Vol 11 (9) ◽  
pp. 4136
Author(s):  
Rosario Pecora

Oleo-pneumatic landing gear is a complex mechanical system conceived to efficiently absorb and dissipate an aircraft’s kinetic energy at touchdown, thus reducing the impact load and acceleration transmitted to the airframe. Due to its significant influence on ground loads, this system is generally designed in parallel with the main structural components of the aircraft, such as the fuselage and wings. Robust numerical models for simulating landing gear impact dynamics are essential from the preliminary design stage in order to properly assess aircraft configuration and structural arrangements. Finite element (FE) analysis is a viable solution for supporting the design. However, regarding the oleo-pneumatic struts, FE-based simulation may become unpractical, since detailed models are required to obtain reliable results. Moreover, FE models could not be very versatile for accommodating the many design updates that usually occur at the beginning of the landing gear project or during the layout optimization process. In this work, a numerical method for simulating oleo-pneumatic landing gear drop dynamics is presented. To effectively support both the preliminary and advanced design of landing gear units, the proposed simulation approach rationally balances the level of sophistication of the adopted model with the need for accurate results. Although based on a formulation assuming only four state variables for the description of landing gear dynamics, the approach successfully accounts for all the relevant forces that arise during the drop and their influence on landing gear motion. A set of intercommunicating routines was implemented in MATLAB® environment to integrate the dynamic impact equations, starting from user-defined initial conditions and general parameters related to the geometric and structural configuration of the landing gear. The tool was then used to simulate a drop test of a reference landing gear, and the obtained results were successfully validated against available experimental data.


2021 ◽  
Vol 217 (3) ◽  
Author(s):  
E. M. Rossi ◽  
N. C. Stone ◽  
J. A. P. Law-Smith ◽  
M. Macleod ◽  
G. Lodato ◽  
...  

AbstractTidal disruption events (TDEs) are among the brightest transients in the optical, ultraviolet, and X-ray sky. These flares are set into motion when a star is torn apart by the tidal field of a massive black hole, triggering a chain of events which is – so far – incompletely understood. However, the disruption process has been studied extensively for almost half a century, and unlike the later stages of a TDE, our understanding of the disruption itself is reasonably well converged. In this Chapter, we review both analytical and numerical models for stellar tidal disruption. Starting with relatively simple, order-of-magnitude physics, we review models of increasing sophistication, the semi-analytic “affine formalism,” hydrodynamic simulations of the disruption of polytropic stars, and the most recent hydrodynamic results concerning the disruption of realistic stellar models. Our review surveys the immediate aftermath of disruption in both typical and more unusual TDEs, exploring how the fate of the tidal debris changes if one considers non-main sequence stars, deeply penetrating tidal encounters, binary star systems, and sub-parabolic orbits. The stellar tidal disruption process provides the initial conditions needed to model the formation of accretion flows around quiescent massive black holes, and in some cases may also lead to directly observable emission, for example via shock breakout, gravitational waves or runaway nuclear fusion in deeply plunging TDEs.


2021 ◽  
Vol 13 (11) ◽  
pp. 2070
Author(s):  
Ana Basañez ◽  
Vicente Pérez-Muñuzuri

Wave energy resource assessment is crucial for the development of the marine renewable industry. High-frequency radars (HF radars) have been demonstrated to be a useful wave measuring tool. Therefore, in this work, we evaluated the accuracy of two CODAR Seasonde HF radars for describing the wave energy resource of two offshore areas in the west Galician coast, Spain (Vilán and Silleiro capes). The resulting wave characterization was used to estimate the electricity production of two wave energy converters. Results were validated against wave data from two buoys and two numerical models (SIMAR, (Marine Simulation) and WaveWatch III). The statistical validation revealed that the radar of Silleiro cape significantly overestimates the wave power, mainly due to a large overestimation of the wave energy period. The effect of the radars’ data loss during low wave energy periods on the mean wave energy is partially compensated with the overestimation of wave height and energy period. The theoretical electrical energy production of the wave energy converters was also affected by these differences. Energy period estimation was found to be highly conditioned to the unimodal interpretation of the wave spectrum, and it is expected that new releases of the radar software will be able to characterize different sea states independently.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lourdes Álvarez-Escudero ◽  
Yandy G. Mayor ◽  
Israel Borrajero-Montejo ◽  
Arnoldo Bezanilla-Morlot

Seasonal climatic prediction studies are a matter of wide debate all over the world. Cuba, a mainly agricultural nation, should greatly benefit from the knowledge, which is available months in advance of the precipitation regime and allows for the proper management of water resources. In this work, a series of six experiments were made with a mesoscale model WRF (Weather Research and Forecasting Model) that produced a 15-month forecast for each month of cumulative precipitation starting at two dates, and for three non-consecutive years with different meteorological characteristics: one dry year (2004), one year that started dry and turned rainy (2005), and one year where several tropical storms occurred (2008). ERA-Interim reanalysis data were used for the initial and border conditions and experiments started 1 month before the beginning of the rainy and the dry seasons, respectively. In a general sense, the experience of using WRF indicated that it was a valid resource for seasonal forecast, since the results obtained were in the same range as those reported by the literature for similar cases. Several limitations were revealed by the results: the forecasts underestimated the monthly cumulative precipitation figures, tropical storms entering through the borders sometimes followed courses different from the real courses inside the working domain, storms that developed inside the domain were not reproduced by WRF, and differences in initial conditions led to significantly different forecasts for the corresponding time steps (nonlinearity). Changing the model parameterizations and initial conditions of the ensemble forecast experiments was recommended.


2019 ◽  
Vol 7 (5) ◽  
pp. 157 ◽  
Author(s):  
Lei Ren ◽  
Jianming Miao ◽  
Yulong Li ◽  
Xiangxin Luo ◽  
Junxue Li ◽  
...  

In order to obtain forward states of coastal currents, numerical models are a commonly used approach. However, the accurate definition of initial conditions, boundary conditions and other model parameters are challenging. In this paper, a novel application of a soft computing approach, random forests (RF), was adopted to estimate surface currents for three analysis points in Galway Bay, Ireland. Outputs from a numerical model and observations from a high frequency radar system were used as inputs to develop soft computing models. The input variable structure of soft computing models was examined in detail through sensitivity experiments. High correlation of surface currents between predictions from RF models and radar data indicated that the RF algorithm is a most promising means of generating satisfactory surface currents over a long prediction period. Furthermore, training dataset lengths were examined to investigate influences on prediction accuracy. The largest improvement for zonal and meridional surface velocity components over a 59-h forecasting period was 14% and 37% of root mean square error (RMSE) values separately. Results indicate that the combination of RF models with a numerical model can significantly improve forecasting accuracy for surface currents, especially for the meridional surface velocity component.


2018 ◽  
Vol 12 (12) ◽  
pp. 3861-3876 ◽  
Author(s):  
Hongju Yu ◽  
Eric Rignot ◽  
Helene Seroussi ◽  
Mathieu Morlighem

Abstract. Thwaites Glacier (TG), West Antarctica, has experienced rapid, potentially irreversible grounding line retreat and mass loss in response to enhanced ice shelf melting. Results from recent numerical models suggest a large spread in the evolution of the glacier in the coming decades to a century. It is therefore important to investigate how different approximations of the ice stress balance, parameterizations of basal friction and ice shelf melt parameterizations may affect projections. Here, we simulate the evolution of TG using ice sheet models of varying levels of complexity, different basal friction laws and ice shelf melt to quantify their effect on the projections. We find that the grounding line retreat and its sensitivity to ice shelf melt are enhanced when a full-Stokes model is used, a Budd friction is used and ice shelf melt is applied on partially floating elements. Initial conditions also impact the model results. Yet, all simulations suggest a rapid, sustained retreat of the glacier along the same preferred pathway. The fastest retreat rate occurs on the eastern side of the glacier, and the slowest retreat occurs across a subglacial ridge on the western side. All the simulations indicate that TG will undergo an accelerated retreat once the glacier retreats past the western subglacial ridge. Combining all the simulations, we find that the uncertainty of the projections is small in the first 30 years, with a cumulative contribution to sea level rise of 5 mm, similar to the current rate. After 30 years, the contribution to sea level depends on the model configurations, with differences up to 300 % over the next 100 years, ranging from 14 to 42 mm.


Sign in / Sign up

Export Citation Format

Share Document