scholarly journals Experimental Study on the Mechanical Properties of Rock Fracture after Grouting Reinforcement

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4814
Author(s):  
Bin Liu ◽  
Haomin Sang ◽  
Zhiqiang Wang ◽  
Yongshui Kang

Grouting reinforcement plays an important role in repairing fractures and improving the strength of the surrounding rock. To address practical engineering challenges such as caving and chip off-falling of surrounding rock in deep roadways, normal splitting was adopted to prefabricate fractures on rock samples gathered from underground coal mines. This was done to better match the rock fracture specimen with actual conditions. Based on the elementary unit of a fracture surface, systematic experiments were conducted on the tensile properties of rock fractures after grouting reinforcement, and the shear properties were studied after considering the presence of gas. As per the results, the tensile strength of rock fractures increased with the increase in viscosity of grout, but the overall tensile strength was relatively low. The overall tensile effect of surrounding rock was improved less by grouting approach. When the presence of fracture gas in grouting was considered, the peak shear strength of fractures after grouting was 8.34–29.9% less than that without considering the fracture gas. The cemented pore surface produced by unsaturated cementation in the grouting reinforcement was the main cause of reduction in cohesion and frictional angle of rock fractures. The conclusions of this study have great significance for guiding engineering grouting and evaluating the grouting effect.


2011 ◽  
Vol 250-253 ◽  
pp. 2617-2621
Author(s):  
Hai Bo Wang ◽  
Peng Ju Lu ◽  
Qi Zong

Small pipe of staggered by length leading-drilling and grouting support technology was adopted for per-reinforcement of Lion-shaped Tunnel typeII rock, cement paste filled into loose rock mass rock fracture for adglutinate broken rock into a integrality, thus enhance the coherence and solidity of rock. Thesis introduced process flow of small pipe drilling grouting, grouting equipment, grouting parameters selection and practical applications. Through tunnel deformation monitoring and analysis, grouting reinforcement has achieved very good effect.



Author(s):  
Van Min Nguyen ◽  
V. A. Eremenko ◽  
M. A. Sukhorukova ◽  
S. S. Shermatova

The article presents the studies into the secondary stress field formed in surrounding rock mass around underground excavations of different cross-sections and the variants of principal stresses at a mining depth greater than 1 km. The stress-strain analysis of surrounding rock mass around development headings was performed in Map3D environment. The obtained results of the quantitative analysis are currently used in adjustment of the model over the whole period of heading and support of operating mine openings. The estimates of the assumed parameters of excavations, as well as the calculations of micro-strains in surrounding rock mass by three scenarios are given. During heading in the test area in granite, dense fracturing and formation of tensile strain zone proceeds from the boundary of e ≥ 350me and is used to determine rough distances from the roof ( H roof) and sidewalls ( H side) of an underground excavation to the 3 boundary e = 350me (probable rock fracture zone). The modeling has determined the structure of secondary stress and strain fields in the conditions of heading operations at great depths.



2012 ◽  
Vol 446-449 ◽  
pp. 1432-1436
Author(s):  
Suo Wang

In order to predict tunnel surrounding rock pressure, this paper puts forward a series of dynamic numerical simulative model on the tunnel excavation. According to the change of rock damage in the construction program, it adjusts dynamically the mechanical material parameters of surrounding rock. So the model achieves the purpose which is controlling and simulating the process of tunnel progressive damage. In accordance with the numerical simulative results, it analyzes the relationship between the rock parameters with the plastic strain, radial displacement. Then this paper proposes a prediction method of tunnel surrounding rock pressure based on the theory of the progressive damage and method of characteristic curve. Finally, it compares the pressure on the numerical simulative models with on the site date, and it proves that the prediction method has practical engineering value.



2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jin Zhang ◽  
Chuanhao Xi ◽  
Qian Zhang ◽  
Mengxue Wang

Carbonaceous slate is heterogeneous and anisotropic, which has a great influence on the stability of tunnel. In this paper, by means of laboratory test, field measurement, and numerical simulation, the surrounding rock stability and plastic zone distribution characteristics of the carbonaceous slate tunnel at different intersection angles are analyzed. First, combined with the Haibaluo tunnel project, Brazilian splitting and uniaxial compression tests of jointed carbonaceous slate are performed. The test results show that the tensile strength of carbonaceous slate is related to joint dip angle. When the joint angle is 0°, the tensile strength is the largest and decreases with the increase of the joint angle. The uniaxial strength of rock decreases first and then increases. Based on the discrete fracture network (DFN) technology, a calculation model is established. The calculation results show that the maximum displacement is 0.45 m, when the dip angle of the surrounding rock joint is 45°. The field measurement also shows that the dip angle of the surrounding rock joint has an important influence on the distribution of the plastic zone. When the joint dip angle is 45°, the plastic zone develops most strongly.



2013 ◽  
Vol 712-715 ◽  
pp. 974-978
Author(s):  
Din Ge Kong ◽  
Kai Hu

Surrounding rock system of underground engineering is highly nonlinear, and there is no unified cognition for its stability criteria. Introduces the basic principle of catastrophe theory, focusing on the cusp catastrophic model, build a simplified mechanical model for the surrounding rock, and the instability of surrounding rock of the cusp catastrophic model is obtained. In practical engineering, it is show that catastrophe theory is an effective method to study the instability problem of the tunnel.



Author(s):  
Wenqi Ding ◽  
Dong Zhou ◽  
Xiaoqing Chen ◽  
Chao Duan ◽  
Qingzhao Zhang

Grouting reinforcement was used to improve rock strength and avoid seepage in rock engineering. A self-developed visualised test platform was developed and the influences of different fracture openness on grouting diffusion modes were revealed; the Bingham rheological model was imported to simulate the grouting diffusion process in a single plate fracture, the spatio-temporal distribution of the velocity field under different obstructions was determined using the finite element method. The results indicate that: 1) The grout diffuses faster with the increase of fracture openness, while a stagnation effect of the grouting diffusion velocity behind the obstruction occurs. 2) Due to obstructions, the grouting diffusion process can be divided into four stages: circular diffusion, flat diffusion, vortex diffusion, and butterfly diffusion. 3) The grouting diffusion area is divided into a fully-reinforced zone and a semi-reinforced zone, and the area of the latter increases with the fracture openness, while being little affected by the size of any obstruction. 4) Furthermore, some new grouting diffusion laws were revealed considering the asymmetrical arrangement of obstructions. The results presented in this work will be helpful for describing and predicting the grouting process in fracture networks.



2021 ◽  
Author(s):  
Amir A. Mofakham ◽  
Farid Rousta ◽  
Dustin M. Crandall ◽  
Goodarz Ahmadi

Abstract Hydraulic fracturing or fracking is a procedure used extensively by oil and gas companies to extract natural gas or petroleum from unconventional sources. During this process, a pressurized liquid is injected into wellbores to generate fractures in rock formations to create more permeable pathways in low permeability rocks that hold the oil. To keep the rock fractures open after removing the high pressure, proppant, which typically are sands with different shapes and sizes, are injected simultaneously with the fracking fluid to spread them throughout rock fractures. The extraction productivity from shale reservoirs is significantly affected by the performance and quality of the proppant injection process. Since these processes occur under the ground and in the rock fractures, using experimental investigations to examine the process is challenging, if not impossible. Therefore, employing numerical tools for analyzing the process could provide significant insights leading to the fracking process improvement. Accordingly, in this investigation, a 4-way coupled Computational Fluid Dynamic and Discrete Element Method (CFD-DEM) code was used to simulate proppant transport into a numerically generated realistic rock fracture geometry. The simulations were carried out for a sufficiently long period to reach the fractures’ steady coverage by proppant. The proppant fracture coverage is a distinguishing factor that can be used to assess the proppant injection process quality. A series of simulations with different proppant sizes as well as various fracking fluid flow rates, were performed. The corresponding estimated fracture coverages for different cases were compared. The importance of proppant size as well as the fluid flow rate on the efficiency of the proppant injection process, were evaluated and discussed.



2020 ◽  
Vol 111 (sp1) ◽  
Author(s):  
Xiaonan He ◽  
Xiaomin Zhou ◽  
Yan Xu ◽  
Wenzhu Ma ◽  
Tao Wu


1994 ◽  
Vol 40 (136) ◽  
pp. 433-450 ◽  
Author(s):  
Louis A. Lliboutry

AbstractThe old problem of erosion by temperate glaciers is reviewed. We restrict ourselves to a monolithologic erosion of hard beds where chemical weathering is almost negligible. Rock fracture, either subglacial or otherwise, may have occurred during a previous cold episode, allowing long-lasting quarrying by the temperate glacier, but, once all the loosened material had been dragged away, grooving becomes the main erosional process. The theory of locally stress-controlled temperatures leads to the idea that very small particles found in the bottom ice cannot reach the bed. Therefore, abrasion and polishing come from rock chips due to grooving or sand grains freed by suglacial chemical weathering. In the steady regime, clasts that are able to groove come from the surrounding rock walls. Most of them do not enter the bergschrund, but are embedded in a bottom layer, which melts progressively over several kilometres. After being in contact with the bed over some distance, they are sufficiently blunted to become unable to groove. This distance. λ, increases with the boulder size, and the largest ones are not yet worn out at the glacier terminus. The mechanics of grooving is roughly modelled to estimate, for any stone size, the grooved volume per unit time and the grooving distance λ. From these estimations, and the size distribution, the erosion rate without quarrying as a function of the distance from the head wall, is calculated. It goes through a maximum when all the debris-laden bottom layer has just melted, and thus an overdeepening might form in a steady way. However, two unknown parameters enter the theory the probability ∏ for a stone able to groove which is in contact with the bed to groove and the ratiokof the volume of grooved rock before the stone is worn out to the volume of the stone. Experiments that may allow us to determine them are indicated below.



Sign in / Sign up

Export Citation Format

Share Document