scholarly journals Joint Study of Impingement Combustion Simulation and Diesel Visualization Experiment of Variable Injection Pressure in Constant Volume Vessel

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6210
Author(s):  
Yuanzhi Tang ◽  
Diming Lou ◽  
Chengguan Wang ◽  
Piqiang Tan ◽  
Zhiyuan Hu ◽  
...  

In this paper, the visualization experiments of spray, ignition, and combustion of diesel under variable injection pressure (from 90 to 130 MPa) were studied by using a constant volume vessel and impinging combustion plate system. With the development of the down-sizing of diesel engines, the wall impinging combustion without liquid spray collision will be the research focus in the diesel engine combustion process. The flame natural luminosity in the experiment represents the soot formation of diesel combustion. Besides, the detailed information of diesel spray mixing combustion was obtained by using the CFD (Computational Fluid Dynamics) simulation of alternative fuels in CONVERGE™. The specific conclusions are as follows. The high velocity of the spray under the higher injection pressure could reduce the low-mixing area near the impinging wall by entraining more air. Under higher injection pressure in simulation, the gas diffused more extensively, and more heat was released after combustion. Therefore, a large amount of soot formed in the early stage of combustion and then oxidized in high-temperature regions, which agreed with the conclusions in the experiments. Under the influence of the superposition of image pixels of the flame, the change of soot generation with injection pressure is smaller than the actual value, so the visualization experiment can be used as the basis of combustion prediction.

2013 ◽  
Vol 465-466 ◽  
pp. 265-269 ◽  
Author(s):  
Mohamad Jaat ◽  
Amir Khalid ◽  
Bukhari Manshoor ◽  
Siti Mariam Basharie ◽  
Him Ramsy

s :This paper reviews of some applications of optical visualization system to compute the fuel-air mixing process during early stage of mixture formation and late injection in Diesel Combustion Engine. This review has shown that the mixture formation is controlled by the characteristics of the injection systems, the nature of the air swirl and turbulence in thecylinder, and spray characteristics. Few experimental works have been investigated and found that the effects of injection pressure and swirl ratio have a great effect on the mixture formation then affects to the flame development and combustion characteristics.This paper presents the significance of spray and combustion study with optical techniques access rapid compression machine that have been reported by previous researchers. Experimental results are presentedin order to provide in depth knowledge as assistance to readers interested in this research area. Analysis of flame motion and flame intensity in the combustion chamber was performed using high speed direct photographs and image analysis technique. The application of these methods to the investigation of diesel sprays highlights mechanisms which provide a better understanding of spray and combustion characteristics.


2019 ◽  
Vol 21 (2) ◽  
pp. 391-405 ◽  
Author(s):  
Zhihao Zhao ◽  
Xiucheng Zhu ◽  
Jeffrey Naber ◽  
Seong-Young Lee

Spray impingement often occurs during cold-start in direct-injection diesel engines, affecting the subsequent combustion process by altering the local flow condition. This work has investigated the impinged flame structure by examining local expansion distance and planar curvature of the boundary in details. The experiments were carried out in a constant volume combustion chamber. The injection pressure and ambient density were varied from 120 to 180 MPa and 14.8 to 30.0 kg/m3 under non-vaporizing conditions, respectively. For reacting conditions, the injection pressure and ambient density were fixed at 150 MPa and 22.8 kg/m3 but with different ambient temperatures from 800 to 1000 K. Unlike orthogonal spray impingement, the profile of expansion distance along the radial direction at the 60° impinging angle is non-uniform but the profile is comparable between the non-vaporizing and reacting conditions under the same injection pressure and ambient density. With the help of Intensity-aXial-Time method, the most intensive soot luminosity region and Mie scattering intensity region are identified and the region has been found to be along the impinged spray axial direction. Outmost boundary of an impinged flame is found to have wrinkles attributed to air entrainment. The temporal level of flame wrinkles is higher in reacting conditions than in non-vaporizing conditions. The scatter distribution of the boundary curvature and near-field soot formation illustrates an inverted “S” shape correlation with time. High flame luminosity is found to be formed in concave regions while less soot is formed in convex regions. This inverted S-shape is a new finding of the state relationship at the solid–liquid–gas impinged flame propagation. Finally, heat flux measurement through the plate is examined.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1478
Author(s):  
Radoslaw Wrobel ◽  
Gustaw Sierzputowski ◽  
Zbigniew Sroka ◽  
Radostin Dimitrov

Alternative fuels appeared soon after the first internal combustion engines were designed. The history of alternative fuels is basically as long as the history of the automotive industry. Initially, fuels whose physicochemical properties allowed for a change in parameters of the combustion process in order to achieve greater efficiency and reliability were searched for. Nowadays, there are significantly more variables; in addition to the above mentioned parameters, alternative fuels are being sought that will ensure environmental protection during vehicle operation and improve the ergonomics of use. This article outlines the results of the authors’ own comparative tests of vibrations of a vibroacoustic character. Based on a popular engine model, the vibration–acoustic responses of a system powered by two types of fuel, namely, diesel and biodiesel (B10), are compared. The research consists of comparing vibrations in both time and frequency domains. In the case of the time domain, the evaluation was performed with vibrations as a function of engine torque and speed. In the case of frequency analysis, the focus was on changes in the frequency response for the tested fuels. The research shows that the profile of vibroacoustic vibrations changes in the case of biodiesel power supply in relation to standard fuel. The vibration profile changes significantly as a function of speed and only slightly in relation to the engine load. The results presented in this article show different vibroacoustic responses of an engine powered by diesel and biodiesel; the change is minor for lower speeds but significant (other harmonics are dominant) for higher speeds (changes in the dominant harmonic magnitude of up to 10% at a crankshaft speed of 3000 rpm).


2020 ◽  
Vol 22 (36) ◽  
pp. 20829-20836
Author(s):  
Cheng Chen ◽  
Xi Jiang

The morphology of nascent soot and the effect of oxygenated additives on sooting mitigation at a constant temperature of 3000 K.


2015 ◽  
Vol 1092-1093 ◽  
pp. 498-503
Author(s):  
La Xiang ◽  
Yu Ding

Natural gas (NG) is one of the most promising alternative fuels of diesel and petrol because of its economics and environmental protection. Generally the NG engine share the similar structure profile with diesel or petrol engine but the combustion characteristics of NG is varied from the fuels, so the investigation of NG engine combustion process receive more attentions from the researchers. In this paper, a zero-dimensional model on the basis of Vibe function is built in the MATLAB/SIMULINK environment. The model provides the prediction of combustion process in natural gas engines, which has been verified by the experimental data in the NG test bed. Furthermore, the influence of NG composition on engine performance is investigated, in which the in-cylinder maximum pressure and temperature and mean indicated pressure are compared using different type NG. It is shown in the results that NG with higher composition of methane results in lower maximum temperature and mean indicated pressure as well as higher maximum pressure.


2021 ◽  
pp. 146808742110464
Author(s):  
Yang Hua

Ether and ester fuels can work in the existing internal combustion (IC) engine with some important advantages. This work comprehensively reviews and summarizes the literatures on ether fuels represented by DME, DEE, DBE, DGM, and DMM, and ester fuels represented by DMC and biodiesel from three aspects of properties, production and engine application, so as to prove their feasibility and prospects as alternative fuels for compression ignition (CI) and spark ignition (SI) engines. These studies cover the effects of ether and ester fuels applied in the form of single fuel, mixed fuel, dual-fuel, and multi-fuel on engine performance, combustion and emission characteristics. The evaluation indexes mainly include torque, power, BTE, BSFC, ignition delay, heat release rate, pressure rise rate, combustion duration, exhaust gas temperature, CO, HC, NOx, PM, and smoke. The results show that ethers and esters have varying degrees of impact on engine performance, combustion and emissions. They can basically improve the thermal efficiency of the engine and reduce particulate emissions, but their effects on power, fuel consumption, combustion process, and CO, HC, and NOx emissions are uncertain, which is due to the coupling of operating conditions, fuel molecular structure, in-cylinder environment and application methods. By changing the injection strategy, adjusting the EGR rate, adopting a new combustion mode, adding improvers or synergizing multiple fuels, adverse effects can be avoided and the benefits of oxygenated fuel can be maximized. Finally, some challenges faced by alternative fuels and future research directions are analyzed.


2021 ◽  
Author(s):  
Thiago Ebel ◽  
Mark Anderson ◽  
Parth Pandya ◽  
Mat Perchanok ◽  
Nick Tiney ◽  
...  

Abstract When developing a turbocharged internal combustion engine, the choice of turbocharger is usually based on designer experience and existing hardware. However, proper turbocharger design relies on matching the compressor and turbine performance to the engine requirements so that parameters such as boost and back pressure, compressor pressure ratio, and turbine inlet temperatures meet the needs of the engine without exceeding its allowable operating envelope. Therefore, the ultimate measure of a successful turbocharger design is how well it is matched to an engine across various operating conditions. This, in turn, determines whether a new turbocharger is required, or an existing solution can be used. When existing turbocharger solutions are not viable, the engine designer is at a loss on how to define a new turbocharger that meets the desired performance requirements. A common approach in industry has been to scale the performance of an existing turbocharger (compressor and turbine maps) and take these requirements for Original Equipment Manufacturers to possibly match it with a real machine. However, the assumptions made in a basic scaling process are quite simplistic and generally not satisfactory in this situation. A better approach would be to use a validated meanline model for a compressor and turbine instead, allowing to perform an actual preliminary design of such components. Such approach allows to link the engine performance requirements in a very early stage of te component design project and it guides the designer for the design decisions, such as rotor size, variable geometry nozzles, diameter, or shroud trims and others. Therefore, a feasible solution is more likely with design less iterations. This paper describes a methodology for an integrated approach to design and analyze a turbocharged internal combustion engine using commercially available state-of-the-art 1D gas dynamics simulation tool linked to two powerful turbomachinery meanline programs. The outputs of this analysis are detailed performance data of the engine and turbocharger at different engine operating conditions. Two case studies are then presented for a 10-liter diesel truck engine. The first study demonstrates how the programs are used to evaluate an existing engine and reverse engineer an existing turbocharger based only on the available performance maps. Then a second study is done using a similar approach but redesigning a new turbocharger (based on the reverse engineered one) for an increased torque output of the same engine.


2015 ◽  
Vol 29 (14) ◽  
pp. 1550091 ◽  
Author(s):  
Ü. Akdere

Classical molecular dynamics simulation calculations of silver bromide, AgBr, and silver chloride, AgCl. in constant volume–energy (NVE) and constant pressure–temperature (NPT) ensembles have been performed. The temperature dependence of linear thermal expansion and molar heat capacities at constant volume and pressure have been presented at solid and liquid phases. The anomalous behavior of these properties about 200 K below the melting temperatures has been analyzed within the frame of the onset of the transition to the superionic phase.


Sign in / Sign up

Export Citation Format

Share Document