scholarly journals The Analysis of the Possibility of Feeding a Liquid Catalyst to a Coal Dust Channel

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8521
Author(s):  
Zdzisław Bielecki ◽  
Marek Ochowiak ◽  
Sylwia Włodarczak ◽  
Andżelika Krupińska ◽  
Magdalena Matuszak ◽  
...  

This article presents the concept of a method of improving the dynamics of combustion in boilers operating in power plants, cogeneration plants, and heating plants by introducing a catalyst that is fed with a carrier in the form of droplets. Thanks to the proposed method, a greater degree of fuel burnout can be obtained, which, in turn, results in lower energy consumption in the case of producing the same amount of power. The parameters of the emitted exhaust gases and ash are also improved. The method described in the article involves the adding of a catalyst to the dust pipe of the boiler, which improves the combustion parameters. The catalyst was implemented using a sprayer/nebulizer. In order to obtain the correct flow parameters, the sprayer was modeled using CFD calculations. The calculations include trajectories, velocities and concentrations with regards to various flow parameters. Particular attention should be paid to the model of the evaporation of moving droplets. The results of these calculations enable the parameters that guarantee that the catalyst reaches the dust channel outlet in the desired form to be assessed. The analysis is an introduction to experimental research that is carried out on a medium and large scale.

Author(s):  
Marek Cichocki ◽  
Ilona Salamonik ◽  
Marcin Bielecki ◽  
Ever Fadlun ◽  
Artur Rusowicz

The typical combined heat and power plants requires the introduction of additional heating medium. The alternative solution is the direct integration of the exhaust gases from heat engine. The high temperature, surplus oxygen and low water content of the GTs exhaust gases enabled the successful integration at industrial scale as: preheated combustion air for industrial furnaces, heat source for drying and for absorption chillers. The article comprises the reference list for direct exhaust gas integration of GTs produced by GE, the processes overview, GTs selection criteria, as well as the review of documented GTs applications in process industry focusing on technical and economic considerations. The described solutions allowed to reduce the specific energy consumption in the range from 7 to 20% or the costs of energy consumption by 15-30%. The overall efficiency of cogeneration plant above 90% was achieved. The preliminary assessment of potential applications for GTs produced by GE with TEG integration in Polish process industry is done.


2017 ◽  
Vol 24 (2) ◽  
pp. 83-88 ◽  
Author(s):  
Damian Joachimiak ◽  
Piotr Krzyślak

Abstract Steam turbines are used as propulsion components in not only power plants but also on merchant and naval ships. The geometry of the steam turbine seals changes throughout the machine life cycle. The rate of deterioration of these seals, in turn, affects heavily the efficiency of the thermal machine. However, the literature overview does not provide any research reports on flow phenomena occurring in heavily deteriorated seals. The paper describes the course and results of investigations into a model straight through labyrinth seal composed of 4 discs, each with the slot height of 2 mm. The investigations have been conducted with air as the working medium. Changes of gas flow parameters due to wear were analysed. Based on the experimental data, more intensive leakage was observed as the result of the increased slot height. The static pressure distribution along the examined segment was measured. The experimentally recorded distribution differed remarkably from the theoretical assumptions. Another part of the experimental research focused on comparing the gas velocities at points situated upstream of the first and second seal disc. The velocity measurements were carried out using a constant temperature wire probe. This part of the investigations provided opportunities for analysing the influence of seal wear on gas flow conditions in the seal segment. The paper compares the results of the experimental research with those obtained using the CFX software. The presented results of velocity distributions provide a clear picture of the nature of the gas flow in the seal, which enables its analysis.


2010 ◽  
Vol 160-162 ◽  
pp. 1558-1563 ◽  
Author(s):  
Hai Lun Xu ◽  
Zi Lin Li

With superheated steam from thermal power plants for medium, the fluidized bed jet mill which had improved vertical turbine classifier was used to study Superheated steam as media in processing ultra-fine fly ash technology. Experiment tested the energy consumption of processing fly ash with superheated steam, which was converted into standard coal compared with the air jet mill technology to prove the environment and energy saving advantages in superheated steam-gas processing ultra-fine fly ash. Experimental results showed that this technology has low energy consumption, high grinding force, and its grinding, grading, collection process is completely in dry method, so this technology is an ideal method for processing ultra-fine fly ash by low-cost and large-scale. At the same time, this paper assessed the environmental benefits of some environmental indicators. Finally, the applications of this technology are summarized.


2020 ◽  
Vol 39 (4) ◽  
pp. 5449-5458
Author(s):  
A. Arokiaraj Jovith ◽  
S.V. Kasmir Raja ◽  
A. Razia Sulthana

Interference in Wireless Sensor Network (WSN) predominantly affects the performance of the WSN. Energy consumption in WSN is one of the greatest concerns in the current generation. This work presents an approach for interference measurement and interference mitigation in point to point network. The nodes are distributed in the network and interference is measured by grouping the nodes in the region of a specific diameter. Hence this approach is scalable and isextended to large scale WSN. Interference is measured in two stages. In the first stage, interference is overcome by allocating time slots to the node stations in Time Division Multiple Access (TDMA) fashion. The node area is split into larger regions and smaller regions. The time slots are allocated to smaller regions in TDMA fashion. A TDMA based time slot allocation algorithm is proposed in this paper to enable reuse of timeslots with minimal interference between smaller regions. In the second stage, the network density and control parameter is introduced to reduce interference in a minor level within smaller node regions. The algorithm issimulated and the system is tested with varying control parameter. The node-level interference and the energy dissipation at nodes are captured by varying the node density of the network. The results indicate that the proposed approach measures the interference and mitigates with minimal energy consumption at nodes and with less overhead transmission.


Author(s):  
Ye. G. Polenok ◽  
S. A. Mun ◽  
L. A. Gordeeva ◽  
A. A. Glushkov ◽  
M. V. Kostyanko ◽  
...  

Introduction.Coal dust and coal fi ring products contain large amounts of carcinogenic chemicals (specifically benz[a]pyrene) that are different in influence on workers of coal mines and thermal power plants. Specific immune reactions to benz[a]pyrene therefore in these categories of workers can have specific features.Objective.To reveal features of antibodies specifi c to benz[a]pyrene formation in workers of coal mines and thermal power plants.Materials and methods.The study covered A and G class antibodies against benz[a]pyrene (IgA-Bp and IgG-Bp) in serum of 705 males: 213 donors of Kemerovo blood transfusion center (group 1, reference); 293 miners(group 2) and 199 thermal power plant workers (group 3). Benz[a]pyrene conjugate with bovine serum albumin as an adsorbed antigen was subjected to immune-enzyme assay.Results.IgA-Bp levels in the miners (Me = 2.7) did not differ from those in the reference group (Me = 2.9), but in the thermal power plant workers (Me = 3.7) were reliably higher than those in healthy men and in the miners (p<0.0001). Levels of IgG-Bp in the miners (Me = 5.0) appeared to be lower than those in the reference group (Me = 6.4; (p = 0.05). IgG-Bb level in the thermal power plantworkers (Me = 7.4) exceeded the parameters in the healthy donors and the miners (p<0.0001). Non-industrial factors (age and smoking) appeared tohave no influence on specific immune reactions against benz[a]pyrene in the miners and the thermal power plant workers.Conclusions.Specific immune reactions against benz[a]pyrene in the miners and the thermal power plant workers are characterized by peculiarities: the miners demonstrate lower levels of class A serum antibodies to benz[a]pyrene; the thermal power plant workers present increased serum levels of class G antibodies to benz[a]pyrene. These peculiarities result from only the occupational features, but do not depend on such factors as age, smoking and length of service at hazardous production. It is expedient to study specific immune reactions to benz[a]pyrene in workers of coal mines and thermal power plants, to evaluate individual oncologic risk and if malignancies occur.


2020 ◽  
Vol 2 (3) ◽  
pp. 153-158
Author(s):  
E. V. YANUSIK ◽  

The article discusses the main prerequisites for the development of nuclear energy in the global econo-my, also defines nuclear energy and discusses the structure of global energy consumption. The article proves that the crucial prerequisite for the development of nuclear energy in the world market is the economic efficiency of nuclear power plants.


2019 ◽  
Vol 70 (11) ◽  
pp. 3835-3842
Author(s):  
Mihai Dumitru Tudor ◽  
Mircea Hritac ◽  
Nicolae Constantin ◽  
Mihai Butu ◽  
Valeriu Rucai ◽  
...  

Direct use of iron ores in blast furnaces, without prior sintering leads to a reduction in production costs and energy consumption [1,2]. Fine-grained iron ores and iron oxides from ferrous wastes can be used together with coal dust and limestone in mixed injection technology through the furnace tuyeres. In this paper are presented the results of experimental laboratory investigations for establishing the physic-chemical characteristics of fine materials (iron ore, limestone, pulverized coal) susceptible to be used for mixed injection in blast furnace. [1,4]. The results of the experimental research have shown that all the raw materials analyzed can be used for mixt injection in blast furnace.


1999 ◽  
Vol 39 (10-11) ◽  
pp. 289-295
Author(s):  
Saleh Al-Muzaini

The Shuaiba Industrial Area (SIA) is located about 50 km south of Kuwait City. It accommodates most of the large-scale industries in Kuwait. The total area of the SIA (both eastern and western sectors) is about 22.98 million m2. Fifteen plants are located in the eastern sector and 23 in the western sector, including two petrochemical companies, three refineries, two power plants, a melamine company, an industrial gas corporation, a paper products company and, two steam electricity generating stations, in addition to several other industries. Therefore, only 30 percent of the land in the SIA's eastern sector and 70 percent of land in the SIA's western sector is available for future expansion. Presently, industries in the SIA generate approximately 204,000 t of solid waste. With future development in the industries in the SIA, the estimated quantities will reach 240,000 t. The Shuaiba Area Authority (SAA), a governmental regulatory body responsible for planning and development in the SIA, has recognized the problem of solid waste and has developed an industrial waste minimization program. This program would help to reduce the quantity of waste generated within the SIA and thereby reduce the cost of waste management. This paper presents a description of the waste minimization program and how it is to be implemented by major petroleum companies. The protocols employed in the waste minimization program are detailed.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 811
Author(s):  
Yaqin Hu ◽  
Yusheng Shi

The concentration of atmospheric carbon dioxide (CO2) has increased rapidly worldwide, aggravating the global greenhouse effect, and coal-fired power plants are one of the biggest contributors of greenhouse gas emissions in China. However, efficient methods that can quantify CO2 emissions from individual coal-fired power plants with high accuracy are needed. In this study, we estimated the CO2 emissions of large-scale coal-fired power plants using Orbiting Carbon Observatory-2 (OCO-2) satellite data based on remote sensing inversions and bottom-up methods. First, we mapped the distribution of coal-fired power plants, displaying the total installed capacity, and identified two appropriate targets, the Waigaoqiao and Qinbei power plants in Shanghai and Henan, respectively. Then, an improved Gaussian plume model method was applied for CO2 emission estimations, with input parameters including the geographic coordinates of point sources, wind vectors from the atmospheric reanalysis of the global climate, and OCO-2 observations. The application of the Gaussian model was improved by using wind data with higher temporal and spatial resolutions, employing the physically based unit conversion method, and interpolating OCO-2 observations into different resolutions. Consequently, CO2 emissions were estimated to be 23.06 ± 2.82 (95% CI) Mt/yr using the Gaussian model and 16.28 Mt/yr using the bottom-up method for the Waigaoqiao Power Plant, and 14.58 ± 3.37 (95% CI) and 14.08 Mt/yr for the Qinbei Power Plant, respectively. These estimates were compared with three standard databases for validation: the Carbon Monitoring for Action database, the China coal-fired Power Plant Emissions Database, and the Carbon Brief database. The comparison found that previous emission inventories spanning different time frames might have overestimated the CO2 emissions of one of two Chinese power plants on the two days that the measurements were made. Our study contributes to quantifying CO2 emissions from point sources and helps in advancing satellite-based monitoring techniques of emission sources in the future; this helps in reducing errors due to human intervention in bottom-up statistical methods.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 414
Author(s):  
Atsuo Murata ◽  
Waldemar Karwowski

This study explores the root causes of the Fukushima Daiichi disaster and discusses how the complexity and tight coupling in large-scale systems should be reduced under emergencies such as station blackout (SBO) to prevent future disasters. First, on the basis of a summary of the published literature on the Fukushima Daiichi disaster, we found that the direct causes (i.e., malfunctions and problems) included overlooking the loss of coolant and the nuclear reactor’s failure to cool down. Second, we verified that two characteristics proposed in “normal accident” theory—high complexity and tight coupling—underlay each of the direct causes. These two characteristics were found to have made emergency management more challenging. We discuss how such disasters in large-scale systems with high complexity and tight coupling could be prevented through an organizational and managerial approach that can remove asymmetry of authority and information and foster a climate of openly discussing critical safety issues in nuclear power plants.


Sign in / Sign up

Export Citation Format

Share Document