scholarly journals Non-Pessimistic Predictions of the Distributions and Suitability of Metasequoia glyptostroboides under Climate Change Using a Random Forest Model

Forests ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 62
Author(s):  
Xiaoyan Zhang ◽  
Haiyan Wei ◽  
Xuhui Zhang ◽  
Jing Liu ◽  
Quanzhong Zhang ◽  
...  

Metasequoia glyptostroboides Hu & W. C. Cheng, which is a remarkable rare relict plant, has gradually been reduced to its current narrow range due to climate change. Understanding the comprehensive distribution of M. glyptostroboides under climate change on a large spatio-temporal scale is of great significance for determining its forest adaptation. In this study, based on 394 occurrence data and 10 bioclimatic variables, the global potential distribution of M. glyptostroboides under eight different climate scenarios (i.e., the past three, the current one, and the next four) from the Quaternary glacial to the future was simulated by a random forest model built with the biomod2 package. The key bioclimatic variables affecting the distribution of M. glyptostroboides are BIO2 (mean diurnal range), BIO1 (annual mean temperature), BIO9 (mean temperature of driest quarter), BIO6 (min temperature of coldest month), and BIO18 (precipitation of warmest quarter). The result indicates that the temperature affects the potential distribution of M. glyptostroboides more than the precipitation. A visualization of the results revealed that the current relatively suitable habitats of M. glyptostroboides are mainly distributed in East Asia and Western Europe, with a total area of approximately 6.857 × 106 km2. With the intensification of global warming in the future, the potential distribution and the suitability of M. glyptostroboides have a relatively non-pessimistic trend. Whether under the mild (RCP4.5) and higher (RCP8.5) emission scenarios, the total area of suitable habitats will be wider than it is now by the 2070s, and the habitat suitability will increase to varying degrees within a wide spatial range. After speculating on the potential distribution of M. glyptostroboides in the past, the glacial refugia of M. glyptostroboides were inferred, and projections regarding the future conditions of these places are expected to be optimistic. In order to better protect the species, the locations of its priority protected areas and key protected areas, mainly in Western Europe and East Asia, were further identified. Our results will provide theoretical reference for the long-term management of M. glyptostroboides, and can be used as background information for the restoration of other endangered species in the future.

2022 ◽  
Vol 12 ◽  
Author(s):  
Ruiping Jiang ◽  
Meng Zou ◽  
Yu Qin ◽  
Guodong Tan ◽  
Sipei Huang ◽  
...  

Fritillaria species, a well-known Chinese traditional medicine for more than 2,000 years, have become rare resources due to excessive harvesting. In order to balance the economical requirement and ecological protection of Fritillaria species, it is necessary to determine (1) the important environmental variables that were responsible for the spatial distribution, (2) distribution change in response to climate change in the future, (3) ecological niche overlap between various Fritillaria species, and (4) the correlation between spatial distribution and phylogenies as well. In this study, the areas with potential ecological suitability for Fritillaria cirrhosa, Fritillaria unibracteata, and Fritillaria przewalskii were predicted using MaxEnt based on the current occurrence records and bioclimatic variables. The result indicated that precipitation and elevation were the most important environmental variables for the three species. Moreover, the current suitable habitats of F. cirrhosa, F. unibracteata, and F. przewalskii encompassed 681,951, 481,607, and 349,199 km2, respectively. Under the scenario of the highest concentration of greenhouse gas emission (SSP585), the whole suitable habitats of F. cirrhosa and F. przewalskii reach the maximum from 2021 to 2100, while those of F. unibracteata reach the maximum from 2021 to 2100 under the scenario of moderate emission (SSP370) from 2021 to 2100. The MaxEnt data were also used to predict the ecological niche overlap, and thus high overlap occurring among three Fritillaria species was observed. The niche overlap of three Fritillaria species was related to the phylogenetic analysis despite the non-significance (P > 0.05), indicating that spatial distribution was one of the factors that contributed to the speciation diversification. Additionally, we predicted species-specific habitats to decrease habitat competition. Overall, the information obtained in this study provided new insight into the potential distribution and ecological niche of three species for the conservation and management in the future.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 84
Author(s):  
Huanchu Liu ◽  
Hans Jacquemyn ◽  
Xingyuan He ◽  
Wei Chen ◽  
Yanqing Huang ◽  
...  

Human pressure on the environment and climate change are two important factors contributing to species decline and overall loss of biodiversity. Orchids may be particularly vulnerable to human-induced losses of habitat and the pervasive impact of global climate change. In this study, we simulated the extent of the suitable habitat of three species of the terrestrial orchid genus Cypripedium in northeast China and assessed the impact of human pressure and climate change on the future distribution of these species. Cypripedium represents a genus of long-lived terrestrial orchids that contains several species with great ornamental value. Severe habitat destruction and overcollection have led to major population declines in recent decades. Our results showed that at present the most suitable habitats of the three species can be found in Da Xing’an Ling, Xiao Xing’an Ling and in the Changbai Mountains. Human activity was predicted to have the largest impact on species distributions in the Changbai Mountains. In addition, climate change was predicted to lead to a shift in distribution towards higher elevations and to an increased fragmentation of suitable habitats of the three investigated Cypripedium species in the study area. These results will be valuable for decision makers to identify areas that are likely to maintain viable Cypripedium populations in the future and to develop conservation strategies to protect the remaining populations of these enigmatic orchid species.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peter Capainolo ◽  
Utku Perktaş ◽  
Mark D. E. Fellowes

Abstract Background Climate change due to anthropogenic global warming is the most important factor that will affect future range distribution of species and will shape future biogeographic patterns. While much effort has been expended in understanding how climate change will affect rare and declining species we have less of an understanding of the likely consequences for some abundant species. The Common Grackle (Quiscalus quiscula; Linnaeus 1758), though declining in portions of its range, is a widespread blackbird (Icteridae) species in North America east of the Rocky Mountains. This study examined how climate change might affect the future range distribution of Common Grackles. Methods We used the R package Wallace and six general climate models (ACCESS1-0, BCC-CSM1-1, CESM1-CAM5-1-FV2, CNRM-CM5, MIROC-ESM, and MPI-ESM-LR) available for the future (2070) to identify climatically suitable areas, with an ecological niche modelling approach that includes the use of environmental conditions. Results Future projections suggested a significant expansion from the current range into northern parts of North America and Alaska, even under more optimistic climate change scenarios. Additionally, there is evidence of possible future colonization of islands in the Caribbean as well as coastal regions in eastern Central America. The most important bioclimatic variables for model predictions were Annual Mean Temperature, Temperature Seasonality, Mean Temperature of Wettest Quarter and Annual Precipitation. Conclusions The results suggest that the Common Grackle could continue to expand its range in North America over the next 50 years. This research is important in helping us understand how climate change will affect future range patterns of widespread, common bird species.


2021 ◽  
Author(s):  
Katharina Enigl ◽  
Matthias Schlögl ◽  
Christoph Matulla

<p>Climate change constitutes a main driver of altering population dynamics of spruce bark beetles (<em>Ips typographus</em>) all over Europe. Their swarming activity as well as development rate are strongly dependent on temperature and the availability of brood trees. Especially over the last years, the latter has substantially increased due to major drought events which led to a widespread weakening of spruce stands. Since both higher temperatures and longer drought periods are to be expected in Central Europe in the decades ahead, foresters face the challenges of maintaining sustainable forest management and safeguarding future yields. One approach used to foster decision support in silviculture relies on the identification of possible alternative tree species suitable for adapting to expected future climate conditions in threatened regions. </p><p>In this study, we focus on the forest district of Horn, a region in Austria‘s north east that is beneficially influenced by the mesoclimate of the Pannonian basin. This fertile yet dry area has been severely affected by mass propagations of <em>Ips typographus</em> due to extensive droughts since 2017, and consequently has suffered from substantial forest damage in recent years. The urgent need for action was realized and has expedited the search for more robust alternative species to ensure sustainable silviculture in the area.</p><p>The determination of suitable tree species is based on the identification of regions whose climatic conditions in the recent past are similar to those that are to be expected in the forest district of Horn in the future. To characterize these conditions, we consider 19 bioclimatic variables that are derived from monthly temperature and rainfall values. Using downscaled CMIP6 projections with a spatial resolution of 2.5 minutes, we determine future conditions in Horn throughout the 21st century. By employing 20-year periods from 2021 to 2100 for the scenarios SSP1-26, SSP2-45, SSP3-70 and SSP5-85,  and comparing them to worldwide past climate conditions, we obtain corresponding bioclimatic regions for four future time slices until the end of the century. The Euclidian distance is applied as measure of similarity, effectively yielding similarity maps on a continuous scale. In order to account for the spatial variability within the forest district, this procedure is performed for the colder northwest and the warmer southeast of the area, individually seeking similar bioclimatic regions for each of these two subregions. Results point to Eastern Europe as well as the Po Valley in northern Italy as areas exhibiting the highest similarity to the future climate in this North-Eastern part of Austria.</p>


Author(s):  
Gráinne de Búrca

This chapter reflects on the lessons to be derived from the advocacy campaigns in Pakistan, Argentina, and Ireland discussed in earlier chapters. Insights drawn from those campaigns are used to refine the experimentalist account of human rights advanced in Chapter 2, particularly as regards the importance of social movements and of building broad social support for human rights campaigns. The remainder of the chapter describes five major challenges of the current era—illiberalism, climate change, digitalization, pandemics, and inequality—and considers the difficulties they pose for the experimentalist account of human rights advocacy. It argues that the experimentalist practice of human rights advocacy is reasonably resilient and adaptive, and that internal contestation from within the human rights movement as well as external critiques have already helped to catalyze reform and to push activists and advocates to think more innovatively about the changes needed to strengthen the ability of the movement to engage with these major challenges in the future. It concludes that in a turbulent era, rather than abandon human rights, we should redouble our efforts to bolster, renew, and reinvigorate a movement that has galvanized constituencies and communities around the globe to mobilize for a better world.


Author(s):  
Christian W. McMillen

There will be more pandemics. A pandemic might come from an old, familiar foe such as influenza or might emerge from a new source—a zoonosis that makes its way into humans, perhaps. The epilogue asks how the world will confront pandemics in the future. It is likely that patterns established long ago will re-emerge. But how will new challenges, like climate change, affect future pandemics and our ability to respond? Will lessons learned from the past help with plans for the future? One thing is clear: in the face of a serious pandemic much of the developing world’s public health infrastructure will be woefully overburdened. This must be addressed.


2018 ◽  
Vol 11 (4) ◽  
pp. 221-230 ◽  
Author(s):  
Bijoy Chhetri ◽  
Hemant K. Badola ◽  
Sudip Barat

Current rates of climatic change will affect the structure and function of community assemblages on Earth. In recent decades, advances in modelling techniques have illuminated the potential effects of various climatic scenarios on biodiversity hotspots, including community assemblages in the Himalayas. These techniques have been used to test the effects of representative concentration pathways (RCPs) AR5-2050, based on future greenhouse gas emission trajectories of climate change scenario/year combinations, on pheasants. Current bioclimatic variables, Miroc-esm, Hadgem2-AO and Gfdl-cm3, in future climate change scenario models, were used to predict the future distribution and the gain/loss of future habitat area, within the Himalayas, of the pheasant, Satyr Tragopon (Tragopan satyra). The results indicate that future climatic conditions may significantly affect the future distribution of Satyr Tragopon and the effectiveness of protective areas (PAs). Using the python based GIS toolkit, SDM projection, regions of high risk under climate change scenarios were identified. To predict the present distribution of the species, environment parameters of bioclimatic variables, red reflectance, blue reflectance, solar azimuth angle, altitude, slope, aspect, NDVI, EVI, VI, and LCLU were used. The forest cover (NDVI) and the canopy cover (EVI), and variables affecting forest structure, namely altitude, slope, solar azimuth angle and Bio7, were the primary factors dictating the present distribution of T. satyra. The predicted trend of habitat shifting of T. satyra in the Himalayas to higher altitudes and latitudes will gradually become more prominent with climate warming.


2018 ◽  
Vol 1 (1-2) ◽  
pp. 224-242 ◽  
Author(s):  
Kyle P. Whyte

Portrayals of the Anthropocene period are often dystopian or post-apocalyptic narratives of climate crises that will leave humans in horrific science-fiction scenarios. Such narratives can erase certain populations, such as Indigenous peoples, who approach climate change having already been through transformations of their societies induced by colonial violence. This essay discusses how some Indigenous perspectives on climate change can situate the present time as already dystopian. Instead of dread of an impending crisis, Indigenous approaches to climate change are motivated through dialogic narratives with descendants and ancestors. In some cases, these narratives are like science fiction in which Indigenous peoples work to empower their own protagonists to address contemporary challenges. Yet within literature on climate change and the Anthropocene, Indigenous peoples often get placed in historical categories designed by nonIndigenous persons, such as the Holocene. In some cases, these categories serve as the backdrop for allies' narratives that privilege themselves as the protagonists who will save Indigenous peoples from colonial violence and the climate crisis. I speculate that this tendency among allies could possibly be related to their sometimes denying that they are living in times their ancestors would have likely fantasized about. I will show how this denial threatens allies' capacities to build coalitions with Indigenous peoples. Inuit culture is based on the ice, the snow and the cold…. It is the speed and intensity in which change has occurred and continues to occur that is a big factor why we are having trouble with adapting to certain situations. Climate change is yet another rapid assault on our way of life. It cannot be separated from the first waves of changes and assaults at the very core of the human spirit that have come our way. Just as we are recognizing and understanding the first waves of change … our environment and climate now gets threatened. Sheila Watt-Cloutier, interviewed by the Ottawa Citizen. (Robb, 2015) In North America many Indigenous traditions tell us that reality is more than just facts and figures collected so that humankind might widely use resources. Rather, to know “it”—reality—requires respect for the relationships and relatives that constitute the complex web of life. I call this Indigenous realism, and it entails that we, members of humankind, accept our inalienable responsibilities as members of the planet's complex life system, as well as our inalienable rights. ( Wildcat, 2009 , xi) Within Māori ontological and cosmological paradigms it is impossible to conceive of the present and the future as separate and distinct from the past, for the past is constitutive of the present and, as such, is inherently reconstituted within the future. (Stewart-Harawira, 2005, 42) In fact, incorporating time travel, alternate realities, parallel universes and multiverses, and alternative histories is a hallmark of Native storytelling tradition, while viewing time as pasts, presents, and futures that flow together like currents in a navigable stream is central to Native epistemologies. ( Dillon, 2016a , 345)


2020 ◽  
Vol 12 (4) ◽  
pp. 1491
Author(s):  
Xuhui Zhang ◽  
Haiyan Wei ◽  
Zefang Zhao ◽  
Jing Liu ◽  
Quanzhong Zhang ◽  
...  

The potential distribution of the invasive plant Anredera cordifolia (Tenore) Steenis was predicted by Random Forest models under current and future climate-change pathways (i.e., RCP4.5 and RCP8.5 of 2050s and the 2070s). Pearson correlations were used to select variables; the prediction accuracy of the models was evaluated by using AUC, Kappa, and TSS. The results show that suitable future distribution areas are mainly in Southeast Asia, Eastern Oceania, a few parts of Eastern Africa, Southern North America, and Eastern South America. Temperature is the key climatic factor affecting the distribution of A. cordifolia. Important metrics include mean temperature of the coldest quarter (0.3 °C ≤ Bio11 ≤ 22.9 °C), max temperature of the warmest month (17.1 °C ≤ Bio5 ≤ 35.5 °C), temperature annual range (10.7 °C ≤ Bio7 ≤ 33 °C), annual mean air temperature (6.8 °C ≤ Bio1 ≤ 24.4 °C), and min temperature of coldest month (−2.8 °C ≤ Bio6 ≤ 17.2 °C). Only one precipitation index (Bio19) was important, precipitation of coldest quarter (7 mm ≤ Bio19 ≤ 631 mm). In addition, areas with strong human activities are most prone to invasion. This species is native to Brazil, but has been introduced in Asia, where it is widely planted and has escaped from cultivation. Under the future climate scenarios, suitable habitat areas of A. cordifolia will expand to higher latitudes. This study can provide a reference for the rational management and control of A. cordifolia.


Sign in / Sign up

Export Citation Format

Share Document