scholarly journals Morphology and Material Composition of the Mouthparts of Stromatium unicolor Olivier 1795 (Coleoptera: Cerambycidae) for Bionic Application

Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 715 ◽  
Author(s):  
Roberto D. Martínez ◽  
Luis-Alfonso Basterra ◽  
Luis Acuña ◽  
José-Antonio Balmori

Research Highlights: The novelty of this study is the deep analysis of the morphologic, geometric and mechanical performance of longhorn beetle larvae mouthparts. Furthermore, a metal nano identification of jaw reinforced parts was made. Background and Objectives: Analysis of insect mechanical properties has shown an important application in the develop of bionic technologies such as new materials, industrial machines and structural concepts. This study aims to determine the mechanical and geometric properties of longhorn beetle (Stromatium unicolor Olivier 1795) larvae mouthparts to improve the development of innovative cutting tools. In addition, this study obtains a nano identification of metals in the cuticle of the mouthparts, which will enable the development of new nontoxic and sustainable preservation agents against xylophagous insects based on nanoparticles. Materials and Methods: five third-larval-stage samples of Stromatium unicolor were used to study its mandible morphologic, geometric and mechanical properties. To this end, mouthparts were analyzed by several microscopic techniques using a scanning electron microscope, a stereomicroscope and an optical microscope. Composition analysis was performed using with two Analytical-Inca X-ray detectors, dispersive energy spectroscopy and dispersive wavelength spectroscopy. Results: The main geometric parameters of the insect jaw are the edge angle (β = 77.3°), maximum path depth of the insect (120 μm), length (800 µm) and mouthpart movement, which were identified and measured. The chemical analysis results of the jaw tissues shows the presence of zinc and manganese. Conclusions: The geometry and angles of the mouthparts can be applied in the fabrication of bionic self-sharpening cutting tools. Molecular compounds that form the reinforcing elements in the jaws can be used to develop wood preservatives based on nanometals and metal absorption and metabolism inhibitors.

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1563
Author(s):  
Sofia Marquez-Bravo ◽  
Ingo Doench ◽  
Pamela Molina ◽  
Flor Estefany Bentley ◽  
Arnaud Kamdem Tamo ◽  
...  

Extremely high mechanical performance spun bionanocomposite fibers of chitosan (CHI), and cellulose nanofibers (CNFs) were successfully achieved by gel spinning of CHI aqueous viscous formulations filled with CNFs. The microstructural characterization of the fibers by X-ray diffraction revealed the crystallization of the CHI polymer chains into anhydrous chitosan allomorph. The spinning process combining acidic–basic–neutralization–stretching–drying steps allowed obtaining CHI/CNF composite fibers of high crystallinity, with enhanced effect at incorporating the CNFs. Chitosan crystallization seems to be promoted by the presence of cellulose nanofibers, serving as nucleation sites for the growing of CHI crystals. Moreover, the preferential orientation of both CNFs and CHI crystals along the spun fiber direction was revealed in the two-dimensional X-ray diffraction patterns. By increasing the CNF amount up to the optimum concentration of 0.4 wt % in the viscous CHI/CNF collodion, Young’s modulus of the spun fibers significantly increased up to 8 GPa. Similarly, the stress at break and the yield stress drastically increased from 115 to 163 MPa, and from 67 to 119 MPa, respectively, by adding only 0.4 wt % of CNFs into a collodion solution containing 4 wt % of chitosan. The toughness of the CHI-based fibers thereby increased from 5 to 9 MJ.m−3. For higher CNFs contents like 0.5 wt %, the high mechanical performance of the CHI/CNF composite fibers was still observed, but with a slight worsening of the mechanical parameters, which may be related to a minor disruption of the CHI matrix hydrogel network constituting the collodion and gel fiber, as precursor state for the dry fiber formation. Finally, the rheological behavior observed for the different CHI/CNF viscous collodions and the obtained structural, thermal and mechanical properties results revealed an optimum matrix/filler compatibility and interface when adding 0.4 wt % of nanofibrillated cellulose (CNF) into 4 wt % CHI formulations, yielding functional bionanocomposite fibers of outstanding mechanical properties.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1610 ◽  
Author(s):  
Paulo J. Morais ◽  
Bianca Gomes ◽  
Pedro Santos ◽  
Manuel Gomes ◽  
Rudolf Gradinger ◽  
...  

Ever-increasing demands of industrial manufacturing regarding mechanical properties require the development of novel alloys designed towards the respective manufacturing process. Here, we consider wire arc additive manufacturing. To this end, Al alloys with additions of Zn, Mg and Cu have been designed considering the requirements of good mechanical properties and limited hot cracking susceptibility. The samples were produced using the cold metal transfer pulse advanced (CMT-PADV) technique, known for its ability to produce lower porosity parts with smaller grain size. After material simulations to determine the optimal heat treatment, the samples were solution heat treated, quenched and aged to enhance their mechanical performance. Chemical analysis, mechanical properties and microstructure evolution were evaluated using optical light microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray fluorescence analysis and X-ray radiography, as well as tensile, fatigue and hardness tests. The objective of this research was to evaluate in detail the mechanical properties and microstructure of the newly designed high-performance Al–Zn-based alloy before and after ageing heat treatment. The only defects found in the parts built under optimised conditions were small dispersed porosities, without any visible cracks or lack of fusion. Furthermore, the mechanical properties are superior to those of commercial 7xxx alloys and remarkably independent of the testing direction (parallel or perpendicular to the deposit beads). The presented analyses are very promising regarding additive manufacturing of high-strength aluminium alloys.


2019 ◽  
Vol 54 (7) ◽  
pp. 981-997
Author(s):  
Semegn Cheneke ◽  
D Benny Karunakar

In this research, microstructure and mechanical properties of stir rheocast AA2024/TiB2 metal matrix composite have been investigated. The working temperature was 640℃, which was the selected semisolid temperature that corresponds to 40% of the solid fraction. Two weight percentage, 4 wt%, and 6 wt% of the TiB2 reinforcements were added to the matrix. The field emission scanning electron microscope micrographs of the developed composites showed a uniform distribution of the particles in the case of the 2 wt% and 4 wt% of the reinforcements. However, the particles agglomerated as the weight percentages of the reinforcement increases to 6%. The optical microscope of the liquid cast sample showed the dendritic structure, whereas the rheocast samples showed a globular structure. The X-ray diffraction analysis confirmed the distribution of the reinforcements in the matrix and the formation of some intermetallic compounds. Mechanical properties significantly improved by the addition of the reinforcements in the matrix. An increase in tensile strength of 13.3%, 40%, 28%, and 5% was achieved for the unreinforced rheocast sample, 2 wt%, 4 wt%, and 6 wt% reinforced rheocast samples respectively, compared to the liquid cast sample. An increase in 20% of hardness was attained for the composite with 2 wt% TiB2 compared to the liquid cast sample. According to the fractography analysis, small dimples were observed on the fractured surface of the unreinforced rheocast sample, whereas small and large voids were dominant on the fractured surface of the 2 wt% composite, which shows the ductile fracture mode.


2007 ◽  
Vol 546-549 ◽  
pp. 257-260 ◽  
Author(s):  
Zhen Yan Zhang ◽  
Li Ming Peng ◽  
Xiao Qin Zeng ◽  
Lin Du ◽  
Lan Ma ◽  
...  

Effects of extrusion on mechanical properties and damping capacity of Mg-1.8wt.%Cu -0.5wt.%Mn (MCM1805) alloy have been investigated. Tensile tests and dynamic mechanical analyzer were respectively used to measure tensile properties and damping capacity at room temperature of as-cast and as-extruded MCM1805 alloy. The microstructure was studied using optical microscope, X-ray diffraction and scanning electron microscope with an energy dispersive X-ray spectrometer. Granato-Lücke model was used to explain the influences of extrusion on damping capacity of MCM1805 alloy. The results showed that extrusion dramatically decreases the grain size but has little influence on phase composition and solute atoms concentration of MCM1805 alloy, and the grain refinement was the dominant reason for the obvious increase of tensile properties and decrease of internal friction of MCM1805 alloy.


2013 ◽  
Vol 685 ◽  
pp. 15-18 ◽  
Author(s):  
Kerim Emre Öksüz ◽  
Hanlar Bağirov ◽  
Hasan Yilmaz ◽  
Buket Silahşor ◽  
Vedat Yildirim

Keywords: Boron Carbide; Silisium Carbide; Composite; Powder Metallurgy. Abstract : In this study, effect of boron carbide (B4C), aluminium oxide (Al2O3) and silisium carbide (SiC) addition on microstructure and mechanical properties of diamond cutting segments was investigated. The effects of reinforcement particle additions on characteristic of CuSn matrix composites have been investigated. For this purpose, Al2O3, SiC and B4C addition quantity was added as 2 wt.%. Samples of segments were processed by cold pressing at 550 MPa, followed by sintering at 850°C/30min. Micro-structural aspects were observed by optical microscope. Density, hardness and wear tests were also performed. Wear behaviour and hardness values of segments changed depending on aluminium oxide, silisium carbide and boron carbide addition. The alloy CuSn– 2 wt.%. B4C presented the best results, available for use in cutting tools.


2013 ◽  
Vol 303-306 ◽  
pp. 2524-2527 ◽  
Author(s):  
Lei Wang ◽  
Guang Hui Min ◽  
Pan Pan Gao ◽  
Xin Ying Wang ◽  
Hua Shun Yu ◽  
...  

The microstructure of magnesium alloy sheets (nominal composition Mg–6Zn–Y in at. %) was investigated with the Optical Microscope (OM), Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD) technique after the annealing treatment. Tensile test at room temperature was performed to show the influence of annealing treatment on mechanical properties. Experimental results indicate that there are a large number of twin crystals appearing in microstructure of the extruded Mg-Zn-Y alloy sheet at 350 °C. The distinct icosahedral phase appears on the α-Mg matrix in granular form and the strength gets largely improved to the maximum. The uniform distribution of isometric crystal contributes to the best elongation at the annealing temperature of 400 °C.


2015 ◽  
Vol 227 ◽  
pp. 397-400
Author(s):  
Monika Gwoździk

The paper contains results of studies on the formation of oxide layers on steel long-term operated at an elevated temperature. The oxide layer was studied on a surface and a cross-section at the inner surface of the tube wall. Thorough examinations of the oxide layer carried out on the inside surface of tube wall comprised:microscopic examinations of the oxide layer were performed using an Olympus GX41 optical microscope,thickness measurements of formed oxide layers,chemical composition analysis of deposits/oxides using a Joel JSM-6610LV scanning electron microscope (SEM) working with an Oxford EDS electron microprobe X-ray analyser,X-ray (XRD) measurements; the layer was subject to measurements using a Seifert 3003T/T X-ray diffractometer and the radiation originating from a tube with a cobalt anode (λCo=0.17902 nm). X-ray studies were performed, comprising measurements in a symmetric Bragg-Brentano geometry (XRD). XRD measurements were performed in the 15÷120° range of angles with an angular step of 0.1° and the exposure time of 4 s. To interpret the results the diffractograms were described by a Pseudo Voight curve using the Analyze software. DHN PDS and PDF4+2009 computer software and crystallographic database were used for the phase identification.


2018 ◽  
Vol 68 (329) ◽  
pp. 148 ◽  
Author(s):  
M. A. Maldonado-García ◽  
U. I. Hernández-Toledo ◽  
P. Montes-García ◽  
P. L. Valdez-Tamez

This study investigated the effects of the addition of untreated sugarcane bagasse ash (UtSCBA) on the microstructural and mechanical properties of mortars. The SCBA was sieved for only five minutes through a No. 200 ASTM mesh, and fully characterized by chemical composition analysis, laser ray diffraction, the physical absorption of gas, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. Mortar mixtures with 0, 10 and 20% UtSCBA as cement replacement and a constant 0.63 water/cementitious material ratio were prepared. Fresh properties of the mortars were obtained. The microstructural characteristics of the mortars at 1, 7, 28, 90 and 600 days were evaluated by SEM and XRD. The compressive strengths of the mortars at the same ages were then obtained. The results show that the addition of 10 and 20% UtSCBA caused a slight decrease in workability of the mortars but improved their microstructure, increasing the long-term compressive strength.


2016 ◽  
Vol 697 ◽  
pp. 526-529 ◽  
Author(s):  
Shi Xun Zhang ◽  
Jian Li ◽  
Yao Ma ◽  
Hai Long Wang ◽  
Rui Zhang

SiC-Al3BC3-cBN composites with different contents of cBN were fabricated by high pressure and high temperature sintering (HPHT) at 1450 °C for 3 min under a pressure of 5.0 GPa using SiC, Al, B4C and C as additives. The effect of SiC content on the density and mechanical properties of SiC-Al3BC3-cBN composites was investigated. X-ray diffraction (XRD) and Scanning electron microscope (SEM) were used to analyze phases and micro-structure of the sintered samples. The hardness of SiC-Al3BC3-cBN composites decreased with the increasing of SiC content, However, the fracture strength of SiC-Al3BC3-cBN composites increased with the increasing of SiC content.


2019 ◽  
Vol 269 ◽  
pp. 03012
Author(s):  
Manjie Fan ◽  
Peng Wang ◽  
Qixing Sun

The influences of prolonged service on microstructure evolution and mechanical properties of NiCrMoV steel welded joint in an ex-service welded steam turbine rotor were investigated. The welded rotor had been operated for 22 years since 1991. The specimens for the present study were taken from the location where the temperature was as high as 230°C. The optical microscope (OM) showed that even after long-term service, there were no obvious defects such as creep cavities, cracks found in the microstructure of the whole welded joint after such a long term service. The microstructure was uniform and no obvious grain coarsening was observed. However some black strip-shaped zones were found in base metal and heat affected zone (HAZ). The distribution of hardness across the welded joints showed no anomalies. The results of tensile strength and fracture toughness tests demonstrated that the welded joint still exhibited excellent. Mechanical performance after long-term service, indicating that the welding process of Shanghai Turbine Plant was reliable and stable. With the improvement of forging and welding qualities and improved heat treatment furnaces with more accurately controlled temperature, it is reasonable to assume that the current large low-pressure (LP) welded rotors are definitely safe to operate under similar service conditions for designed life.


Sign in / Sign up

Export Citation Format

Share Document