scholarly journals Spectroscopic Stability Studies of Pressure Sensitive Labels Facestock Made from Recycled Post-Consumer Waste and Agro-Industrial By-Products

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1703
Author(s):  
Marina Vukoje ◽  
Katarina Itrić Ivanda ◽  
Rahela Kulčar ◽  
Ana Marošević Dolovski

To support circular economy and sustainability, the use of synthetic polymers should be minimized due to their excessive accumulation in the environment and low biodegradation rate which leads to a global waste problem. Thus, the quota of natural resources should be increased, as well as the use of agriculture and industrial waste or by-products as raw materials in industrial processes. Agro-industrial wastes were found to have high cellulose fiber potential which makes them an excellent resource for paper production. This study investigates the influence of artificial aging test on the stability of commercially available fiber based self-adhesive pressure sensitive labels (PSL), in which the facestock is made of 15% agro-industrial byproducts, 40% post-consumer recycled paper and 45% virgin wood pulp and compared to ones made of biobased polyethylene. The results showed that optical brighteners are present in the composition of fiber based PSL. Moreover, the fluorescence and UV-Visible spectroscopy results indicated that by the action of UV irradiation and temperature. The oxidation of cellulose was not found by FTIR spectroscopy, indicating its high stability.

1989 ◽  
Vol 4 (2) ◽  
pp. 447-451 ◽  
Author(s):  
J. Majling ◽  
V. Jesenák ◽  
Della M. Roy ◽  
Rustum Roy

A method has been developed for determining the equilibrium phase composition of multicomponent systems at subsolidus conditions and atmospheric pressure, based on the knowledge of binary phase compatibilities and on information concerning the existence and stoichiometry of ternary and higher order compounds. The method, combined with material balance, enables computation of the changes of equilibrium phase compositions of fired products dependent on the proportions of multicomponent raw materials; the procedure is useful for assessing the exploitability of industrial wastes for production of binding materials and ceramics. It is also possible to find the raw material mixture composition needed for the desired phase composition of the fired product.


2015 ◽  
Vol 1124 ◽  
pp. 177-182
Author(s):  
Vit Cerný

Combustion of coal creates a high amount of by-products in heat power plants. The largest share occupies fly ash as solid mineral residuals. Global pressure grows currently for the use of energy by-products. Utilization as a raw material for production of artificial sintered aggregate is one of the ways to make optimal use of even low-quality fly ash. Environmental and economic reasons lead currently to trying to upgrade the technology, which will fully use of the principle of self-sintering process based on content of combustible substances.The amount of combustible substances is today increasing by coal as a primary and finite resource. There is also best way for utilization of industrial wastes that contain a suitable share of combustible substances for ensure the smooth running of sintering.The paper deals with laboratory verification of selected industrial wastes as a correction component in the sintered aggregate production technology. As an alternative raw materials were selected coal tailings, sludge from paper industry, sludge from waste water treatment plant and fly ash from municipal waste incineration plant. The aim of the study was to investigate the effect of corrective components to the quality of the resulting sintered aggregates.


2011 ◽  
Vol 65 (4) ◽  
pp. 411-422 ◽  
Author(s):  
Aleksandra Djukic-Vukovic ◽  
Ljiljana Mojovic ◽  
Dusanka Pejin ◽  
Maja Vukasinovic-Sekulic ◽  
Marica Rakin ◽  
...  

Lactic acid is a relatively cheap chemical with a wide range of applications: as a preservative and acidifying agent in food and dairy industry, a monomer for biodegradable poly-lactide polymers (PLA) in pharmaceutical industry, precursor and chemical feedstock for chemical, textile and leather industries. Traditional raw materials for fermentative production of lactic acid, refined sugars, are now being replaced with starch from corn, rice and other crops for industrial production, with a tendency for utilization of agro industrial wastes. Processes based on renewable waste sources have ecological (zero CO2 emission, eco-friendly by-products) and economical (cheap raw materials, reduction of storage costs) advantages. An intensive research interest has been recently devoted to develop and improve the lactic acid production on more complex industrial by-products, like thin stillage from bioethanol production, corncobs, paper waste, straw etc. Complex and variable chemical composition and purity of these raw materials and high nutritional requirements of Lare the main obstacles in these production processes. Media supplementation to improve the fermentation is an important factor, especially from an economic point of view. Today, a particular challenge is to increase the productivity of lactic acid production on complex renewable biomass. Several strategies are currently being explored for this purpose such as process integration, use of Lwith amylolytic activity, employment of mixed cultures of Land/or utilization of genetically engineered microorganisms. Modern techniques of genetic engineering enable construction of microorganisms with desired characteristics and implementation of single step processes without or with minimal pre-treatment. In addition, new bioreactor constructions (such as membrane bioreactors), utilization of immobilized systems are also being explored. Electrodialysis, bipolar membrane separation process, enhanced filtration techniques etc. can provide some progress in purification technologies, although it is still remaining the most expensive phase in the lactic acid production. A new approach of parallel production of lactic bacteria biomass with probiotic activity and lactic acid could provide additional benefit and profit rise in the production process.


2021 ◽  
Vol 2021 (24) ◽  
pp. 193-205
Author(s):  
Ivan Kopynets ◽  
◽  
Volodymyr Kaskiv ◽  
Оleksii Sokolov ◽  
◽  
...  

Introduction. Mineral powder is an important structural component of asphalt concrete. Mineral powder is the output material obtained after crushing of rocks or powdery remains of the industry. It is made by grinding the following hard rocks: dolomitized limestone, dolomite, limestone. Non-carbonate raw materials and industrial wastes are also used as raw materials. Problem statement. Road construction with the arrangement of asphalt concrete pavements requires a number of components of these mixtures. Due to this, the need in scarce carbonate mineral powders is growing. Therefore, it is advisable to consider researches directed on studying a number of by-products of industry in order to use them as a mineral powder of asphalt concrete. Purpose. To analyze the existing experience of using industrial waste as a mineral powder in production of asphalt concrete mixture for further introduction and improvement of environmental safety and operational characteristics of pavement due to new road construction materials. Materials and methods. Analysis of information sources and experience in the use of industrial waste as a mineral powder and study of requirements for materials and their composition. Results. An analytical review of the experience of using industrial waste as a mineral powder was performed. Various materials have been studied and analyzed, requirements for materials, their particle size distribution, content in asphalt concrete mixture had been established. Conclusions. Analysis of information sources regarding use of industrial waste as a raw material for the production of mineral powder had determined that they are used in the whole volume in different countries and in most cases in road construction. It had been found that the use of various wastes during road construction is a viable option that needs further study.


2021 ◽  
Vol 43 ◽  
pp. e72
Author(s):  
Jéssica Crecencio Matei ◽  
João Arthur dos Santos Oliveira ◽  
João Alencar Pamphile ◽  
Julio Cesar Polonio

Agro-industrial wastes contain high moisture content and are rich in nutrients, and can be used as useful substrates by microbes with the supplementation of nitrogen sources, thus providing an alternative tool for the industrial production of many products of economic value, such as enzymes for example. These are proteins that function as biological catalysts, responsible for carrying out various biochemical reactions, being applied in detergent, food, paper and cellulose, cosmetics, textile industries, etc. However, they are expensive raw materials, and it is worth noting that an important part of the cost of manufacturing enzymes is mainly due to the expense of means and fermentation processes. Thus, to minimize the cost of this production and in order to reduce the degradation of the environment due to agricultural waste, a variety of microorganisms and agro-industrial “by-products” can be used to facilitate the economic production of enzymes.Therefore, in this work, a review was carried out on agro-industrial residues and the main enzymes in the industrial market, as well as the use of these materials as sources to obtain enzymes produced by fungi.


2015 ◽  
Vol 2 (3) ◽  
pp. 26-31
Author(s):  
K. Węglarzy ◽  
Yu. Shliva ◽  
B. Matros ◽  
G. Sych

Aim. To optimize the methane digestion process while using different recipes of substrate components of ag- ricultural origin. Methods. The chemical composition of separate components of the substrate of agricultural by-products, industrial wastes, fats of the agrorefi nery and corn silage was studied. Dry (organic) mass, crude protein (fat) fi ber, loose ash, nitrogen-free exhaust were estimated in the components and the productivity of biogas was determined along with the methane content. These data were used as a basis for daily recipes of the substrate and the analysis of biogas production at the biogas station in Kostkowice. Results. The application of by-products of agricultural production solves the problem of their storage on boards and in open containers, which reduces investment costs, related to the installation of units for their storage. Conclusions. The return on investment for obtaining electric energy out of agricultural biogas depends considerably on the kind of the substrate used and on technological and market conditions.


2020 ◽  
Vol 8 (3) ◽  
pp. 74-78
Author(s):  
Farrux Zulfiyev ◽  

This article is based on the principles of shared financing of the production of raw materials. The article is aimed at financing the production of capital on the basis of equity in order to further strengthen the stability of economic reforms in the republic. At the same time, the essence of equity financing, the risks associated with it, and the efficiency of raw materials are covered


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 381
Author(s):  
Alessandro Nanni ◽  
Mariafederica Parisi ◽  
Martino Colonna

The plastic industry is today facing a green revolution; however, biopolymers, produced in low amounts, expensive, and food competitive do not represent an efficient solution. The use of wine waste as second-generation feedstock for the synthesis of polymer building blocks or as reinforcing fillers could represent a solution to reduce biopolymer costs and to boost the biopolymer presence in the market. The present critical review reports the state of the art of the scientific studies concerning the use of wine by-products as substrate for the synthesis of polymer building blocks and as reinforcing fillers for polymers. The review has been mainly focused on the most used bio-based and biodegradable polymers present in the market (i.e., poly(lactic acid), poly(butylene succinate), and poly(hydroxyalkanoates)). The results present in the literature have been reviewed and elaborated in order to suggest new possibilities of development based on the chemical and physical characteristics of wine by-products.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3052
Author(s):  
Diego Cardoza ◽  
Inmaculada Romero ◽  
Teresa Martínez ◽  
Encarnación Ruiz ◽  
Francisco J. Gallego ◽  
...  

A biorefinery integrated process based on lignocellulosic feedstock is especially interesting in rural areas with a high density of agricultural and agro-industrial wastes, which is the case for olive crop areas and their associated industries. In the region of Andalusia, in the south of Spain, the provinces of Jaén, Córdoba and Seville accumulate more than 70% of the olive wastes generated in Spain. Therefore, the valorisation of these wastes is a matter of interest from both an environmental and a social point of view. The olive biorefinery involves a multi-product process from different raw materials: olive leaves, exhausted olive pomace, olive stones and olive tree pruning residues. Biorefinery processes associated with these wastes would allow their valorisation to produce bioenergy and high value-added renewable products. In this work, using geographic information system tools, the biomass from olive crop fields, mills and olive pomace-extracting industries, where these wastes are generated, was determined and quantified in the study area. In addition, the vulnerability of the territory was evaluated through an environmental and territorial analysis that allowed for the determination of the reception capacity of the study area. Then, information layers corresponding to the availability of the four biomass wastes, and layers corresponding to the environmental fragility of the study area were overlapped and they resulted in an overall map. This made it possible to identify the best areas for the implementation of the biorefineries based on olive-derived biomass. Finally, as an example, three zones were selected for this purpose. These locations corresponded to low fragility areas with a high availability of biomass (more than 300,000 tons/year) in a 30 km radius, which would ensure the biomass supply.


2021 ◽  
Vol 13 (8) ◽  
pp. 4394
Author(s):  
Margarita Ignatyeva ◽  
Vera Yurak ◽  
Alexey Dushin ◽  
Vladimir Strovsky ◽  
Sergey Zavyalov ◽  
...  

Nowadays, circular economy (CE) is on the agenda, however, this concept of closed supply chains originated in the 1960s. The current growing quantity of studies in this area accounts for different discourses except the holistic one, which mixes both approaches—contextual and operating (contextual approach utilizes the thorough examination of the CE theory, stricture of the policy, etc.; the operating one uses any kind of statistical data)—to assess the capacity of circular economy regulatory policy packages (CERPP) in operating raw materials and industrial wastes. This article demonstrates new guidelines for assessing the degree level of capacity (DLC) of CERPPs in the operation of raw materials and industrial wastes by utilizing the apparatus of the fuzzy set theory. It scrupulously surveys current CERPPs in three regions: the EU overall, Finland and Russia; and assesses for eight regions—the EU overall, Finland, Russia, China, Greece, France, the Netherlands and South Korea—the DLC of CERPPs in operating raw materials and industrial wastes. The results show that EU is the best in CE policy and its CERPP is 3R. The following are South Korea and China with the same type of CERPP. Finland, France and the Netherlands have worse results than EU with the type of CERPP called “integrated waste management” because of the absence of a waste hierarchy (reduce, recover, recycle). Russia closes the list with the type of CERPP “basic waste management”.


Sign in / Sign up

Export Citation Format

Share Document