scholarly journals Correlation between Genetic Characteristics, Cell Structure and Material Properties of Moso Bamboo (Phyllostachys edulis (Carriere) J. Houzeau) in Different Areas of China

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 107
Author(s):  
Wenbo Zhang ◽  
Tao Hu ◽  
Yanting Chang ◽  
Benhua Fei ◽  
Yanjun Ma ◽  
...  

Moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau), native to China, is one of the most economically and ecologically important bamboo species. Since the economic interests and the strong clonality, it has been widely cultivated in southern China, which inevitably reduces the natural stands and leads to gene loss in this species. In this study, three natural populations of Moso bamboo distributed in Anhui, Guangxi, and Zhejiang province, were used to analyze the correlation between phenotypic traits, cell structure, and material properties from the perspective of phenotypic, genetic, and environmental. Among those traits and properties, fiber width was correlated with wall thickness at breast height and average nodes length under branch positively. Leaf length was correlated positively with fiber lumen diameter and parenchyma lumen diameter. Furthermore, it showed a very close correlation between moisture content, bending strength, modulus of elasticity, and diameter at breast height, clear height, and leaf length. The lumen diameter of fiber cell wall thickness is positively correlated with bending strength and modulus of elasticity. Density is positively correlated with parenchyma cell wall thickness. The experimental design is relatively detailed and representative, and the workload is huge. This study reflects the research objectives with scientific and rational experiments and data. This study will analyze the differences of various indicators from the perspective of genetic to build a bridge between micro-structure and macro-structure for rational utilization of the whole area of Moso bamboo resources in China.

Holzforschung ◽  
2002 ◽  
Vol 56 (5) ◽  
pp. 449-460 ◽  
Author(s):  
H. Mäkinen ◽  
P. Saranpää ◽  
S. Linder

Summary To study the effect of growth rate on fibre characteristics and their variations in Norway spruce, trees were sampled in a nutrient optimisation experiment in northern Sweden. Data was collected from 24 trees (40 years old) from fertilised and control plots after 12 years of annual nutrient application, as well as from older trees outside the experimental area. Fibre length, fibre diameter, cell wall thickness, lumen diameter and cell wall percentage were measured from every third annual ring at breast height and at a height of 4 m. Fibre properties, as well as their standard deviation, were closely related to ring number and distance from the pith. Intra-ring variation of fibre characteristics was high compared to their variation between trees. Fertilisation reduced fibre length and cell wall thickness, but increased fibre and lumen diameter in rings of the same age. The difference in fibre width, cell wall thickness and lumen diameter between fertilised and control trees was less apparent, but a greater difference in fibre length was found between the treatments with regard to distance from the pith. There was a similar effect of fertilisation on fibre properties in early- and latewood. The effect of enhanced growth rate was less pronounced at a height of 4 m (near the pith) than at breast height (in older rings). It was demonstrated that it is possible to model intra-tree variability of fibre characteristics using ring width and cambial age as independent variables. Models presented are, however, limited by the relatively young age of the sample trees used.


2014 ◽  
Vol 11 (1) ◽  
pp. 51
Author(s):  
Mohd Helmy Ibrahim ◽  
Mohd Nazip Suratman ◽  
Razali Abd Kader

Trees planted from agroforestry practices can become valuable resources in meeting the wood requirements of many nations. Gliricidia sepium is an exotic species introduced to the agricultural sector in Malaysia mainly for providing shade for cocoa and coffee plantations. This study investigates its wood physical properties (specific gravity and moisture content) and fibre morphology (length, lumen diameter and cell wall thickness) of G. sepium at three intervals according to age groups ( three, five and seven years of ages). Specific gravity (0.72) was significantly higher at seven years ofage as compared to five (0.41) and three (0.35) years age group with a mean of 0.43 (p<0.05). Mean moisture content was 58.3% with no significant difference existing between the tree age groups. Fibre diameter (22.4 mm) was significantly lower (p<0.05) for the trees which were three years of age when compared to five and seven years age groups (26.6 mm and 24. 7 mm), respectively. Means of fibre length, lumen diameter and cell wall thickness were 0.83 mm, 18.3 mm, and 6.2 mm, respectively, with no significant differences detected between trees in all age groups. Further calculation on the coefficient of suppleness and runkel ratio suggest that wood from G.sepium may have the potential for insulation board manufacturing and paper making. However, future studies should experiment the utilisation of this species for these products to determine its full potential.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7935-7952
Author(s):  
Dimitrios Tsalagkas ◽  
Zoltán Börcsök ◽  
Zoltán Pásztory ◽  
Vladimir Gryc ◽  
Levente Csóka ◽  
...  

The suitabilities of major agricultural residues were assessed as papermaking feedstocks. All the examined agricultural residues were assumed as potential candidates for substituting hardwood fibers in mixed pulp blends from a fiber morphological perspective. Wheat, barley, rice, rapeseed, maize, sunflower, sugarcane bagasse, coconut husk, and two genotypes of miscanthus grass underwent identical maceration. The fiber length, fiber width, cell wall thickness, and lumen diameter were measured to calculate the slenderness ratio, flexibility coefficient, and Runkel ratio. The average fiber length ranged from 0.50 mm ± 0.32 mm (MG-S-02-V) to 1.15 mm mm ± 0.58 mm (sugarcane bagasse). The fiber width ranged from 10.77 μm ± 3.28 μm (rice straw) to 22.99 mm ± 5.20 mm (sunflower stalk). The lumen diameter ranged from 4.52 μm ± 2.52 μm (rice straw) to 13.23 μm ± 4.87 μm (sunflower stalk). The cell wall thickness ranged from 3.02 μm ± 0.95 μm (rice straw) to 4.80 μm ± 1.48 μm (sunflower stalk). The slenderness ratio, flexibility coefficient, and Runkel ratio values ranged between 28.08 to 58.11, 37.97 to 60.8, and 0.62 to 1.68, respectively. Wheat, maize, rapeseed, sugarcane bagasse, and coconut husk were found to be appropriate residue sources for papermaking feedstocks.


Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 38 ◽  
Author(s):  
Changtao Li ◽  
Lingling Xuan ◽  
Yuming He ◽  
Jie Wang ◽  
Hui Zhang ◽  
...  

A bamboo shoot is the immature stem of the woody grass and a nutritious and popular vegetable in East Asia. However, it undergoes a rapid xylogenesis process right after harvest, even being stored in a cold chamber. To investigate the molecular regulation mechanisms of xylogenesis in Moso bamboo (Phyllostachys edulis) shoots (MBSes) during cold storage, the measurement of cell wall polymers (cellulose, hemicellulose, and lignin) and related enzyme activities (phenylalanine ammonia lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), peroxidase (POD), and xylan xylosyltransferase (XylT)) and transcriptomic analysis were performed during cold storage. It was noticed that cellulose and lignin contents increased, while hemicellulose content exhibited a downward trend. PAL, CAD, and POD activity presented an upward trend generally in MBS when stored at 4 °C for 16 days. XylT activity showed a descending trend during the stages of storage, but slightly increased during the 8th to 12th days after harvest at 4 °C. Transcriptomic analysis identified 72, 28, 44, and 31 functional unigenes encoding lignin, cellulose, xylan biosynthesis enzymes, and transcription factors (TFs), respectively. Many of these secondary cell wall (SCW)-related genes showed higher expression levels in the later period of cold storage. Quantitative RT-PCR analysis of the selected genes conformed to the expression pattern. Our study provides a comprehensive analysis of MBS secondary wall biosynthesis at the molecular level during the cold storage process. The results give insight into the xylogenesis process of this economically important vegetable and shed light on solving this problem of the post-harvest industry.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5696-5709
Author(s):  
Ali Hassanpoor Tichi ◽  
Habibollah Khademieslam ◽  
Mojtaba Rezanezhad Divkolae

Three healthy Citrus sinensis (orange) trees in Babol, Iran, were randomly selected and cut. Two discs of 5 cm thickness were prepared along the tree (breast height and crown). In the transverse direction, the test specimens were cut 2 × 2 cm to 3 cm from the pith to the bark sequentially and examined. The biometric and physical properties were measured, and microscopic sections of wood near the bark were studied using light microscopy according to the International Association of Wood Anatomists’ (IAWA) List. Anatomical examination of the C. sinensis wood showed that the species was a diffuse porous hardwood, with indistinct growth rings, simple perforation plates, alternate intervessel pits, and banded parenchyma. The basic density and oven-dry density increased from the pith towards the tree bark and from the bottom of the tree towards the crown. There was a significant difference in both the transverse and longitudinal directions of the C. sinensis tree in terms of fiber length, fiber lumen diameter, fiber diameter, and cell wall thickness. The mean fiber length, fiber diameter, fiber lumen diameter, and cell wall thickness were 0.76 mm, 23.64 µm, 9.23 µm, and 14.41 µm, respectively.


Author(s):  
Thanh Nguyen ◽  
Jie Deng ◽  
Brian Robert ◽  
Weinong Chen ◽  
Thomas Siegmund

Abstract The safety of electrochemical energy storage system depends on the structural integrity of the call containment. Nominal values of cell case dimensions and material properties are the standard inputs for the mechanical analysis of prismatic lithium-ion batteries. However, such data usually does not account for any considerations on the influence of the manufacturing processes of the cell case. This study investigates the effects of the cell wall thickness and elastic modulus, resulting from deep-drawing process, on the cell and cell assembly response. It is found that the deep-drawing process degrades Young’s modulus relative to standard values and leads to a spatial variation the wall thickness of the cell case. The use of actual cell case material properties and cell wall thickness values is required to obtain validated finite element models of the battery cell case. Using experiments on internal pressure loaded single battery cells and finite element computations, it is demonstrated that the use of nominal cell casing characteristics significantly underestimates the resistance provided by the cell case to counter swelling of the active battery components.


2014 ◽  
Vol 11 (1) ◽  
pp. 51
Author(s):  
Mohd Helmy Ibrahim ◽  
Mohd Nazip Suratman ◽  
Razali Abd Kader

Trees planted from agroforestry practices can become valuable resources in meeting the wood requirements of many nations. Gliricidia septum is an exotic species introduced to the agricultural sector in Malaysia mainly for providing shade for cocoa and coffee plantations. This study investigates its wood physical properties (specific gravity and moisture content) and fibre morphology (length, lumen diameter and cell wall thickness) of G.sepium at three intervals according to age groups (three, five and seven years of ages). Specific gravity (0.72) was significantly higher at seven years of age as compared to five (0.4 I) and three (0.35) years age group with a mean of 0.43 (p<0.05). Mean moisture content was 58.3% with no significant difference existing between the tree age groups. Fibre diameter (22.4 mm) was significantly lower (p<0.05) for the trees which were three years of age when compared to five and seven years age groups (26.6 mm and 24. 7 mm), respectively. Means of fibre length, lumen diameter and cell wall thickness were 0.83 mm, 18.3 mm, and 6.2 mm, respectively,, with no significant differences detected between trees in all age groups. Further calculation on the coefficient of suppleness and runkel ratio suggest that wood from G.sepium may have the potential for insulation board manufacturing and paper making. However, future studies should experiment the utilisation of this species for these products to determine its full potential.


FLORESTA ◽  
2021 ◽  
Vol 51 (4) ◽  
pp. 910
Author(s):  
Elder Eloy ◽  
Rômulo Trevisan ◽  
Tainara Dos Santos Piecha ◽  
Magda Rosa Fontoura ◽  
Henrique Webber Dalla Costa ◽  
...  

Drying is an important process in the generation of wood products, as it increases the quality of the final products; however, it is influenced by various anatomical characteristics. The aim of this study was to evaluate the influence of anatomy on the drying of wood of Parapiptadenia rigida (Benth.) Brenan, Peltophorum dubium (Spreng.) Taub., Eucalyptus grandis W. Hill × Eucalyptus urophylla S.T. Blake (hybrid), and Schizolobium parahyba (Vell.) Blake trees from an agroforestry system. Three trees aged 9 years were sampled for each species. The trees were removed from the study region when their diameter at breast height (DBH) was 1.30 m from the ground. Blocks were made with dimensions of 5.0 × 5.0 × 15.0 cm for the evaluation of oven drying and 1.5 × 1.5 × 2.0 cm for anatomical features. S. parahyba has the highest value of fiber diameter (35.1 µm) and lumen diameter (27.6 µm), whereas P. dubium had the highest value of cell wall thickness (6.8 µm). The average equilibrium moisture content was 10.98% after 40 days of drying. The anatomy of the wood influenced the drying of the four species intensity, which was related to humidity during all periods. The anatomical parameters that most influenced drying were fiber diameter (Pearson correlation coefficient: 0.77), lumen diameter (0.76), and fiber cell wall thickness (0.73); the higher the values, the greater was the drying intensity.


Holzforschung ◽  
2007 ◽  
Vol 61 (3) ◽  
pp. 301-310 ◽  
Author(s):  
Tuula Jaakkola ◽  
Harri Mäkinen ◽  
Pekka Saranpää

Abstract The effects of the intensity and timing of commercial thinning and fertilisation on tracheid properties and lignin content of Norway spruce [Picea abies (L.) Karst] were studied in two long-term fertilisation-thinning experiments in central and eastern Finland. The experiments consisted of three thinning and three fertilisation treatments in a randomised block design. Fertilisation levels were: unfertilised (F 0), 150 kg N ha-1 (F 1), and 300 kg N ha-1 (F 2). Thinning treatments were: delayed first thinning (T 0), normal thinning (T 1), and intensive first thinning (T 2). A total of 85 trees were sampled 26 years after treatment onset. Tracheid length was measured for 24 trees and cell wall thickness and lumen diameter for 16 trees grown under treatments F 0 T 0, F 0 T 2, F 1 T 0, and F 1 T 2. Lignin content was determined for all trees sampled (n=85) grown in all the different treatment combinations. We found only small differences in tracheid length (0–6%), cell wall thickness (1–17%) and lumen diameter (0–9%), depending on the different fertilisation and thinning conditions. We also found only slightly (1–2%) higher lignin content for fertilised (F 1 and F 2) than for unfertilised (F 0 ) trees (25.8% and 26.0% vs. 25.4%). Trees yielded 26.0% lignin content after intensive first thinning (T 2), 25.9% following normal thinning (T 1), and 25.4% after delayed first thinning (T 0). Thus, the prevailing fertilisation and thinning practice for Norway spruce stands in Finland may not cause essential changes in tracheid properties and lignin content.


2020 ◽  
Vol 70 (1) ◽  
pp. 72-78
Author(s):  
Elin Xiang ◽  
Yihan Guo ◽  
Shumin Yang ◽  
Xinge Liu ◽  
Genlin Tian ◽  
...  

Abstract The anatomical characteristics of culms in Bambusa pervariabilis bamboo at different ages and heights were investigated by microscopy and image analysis. Among the two vascular bundle types found in culms, the broken-waist type was considered typical, with the following measurements: average proportion of fibrous tissue, 41.53 percent; length, 1.75 mm; slenderness ratio, 117; and Runkel ratio, 4.00. These values were close to those of the moso bamboo (Phyllostachys edulis), which is commercially relevant in China. Age and height significantly influenced the anatomical characteristics of B. pervariabilis: with an increase in age, both the length and double-wall thickness of the fiber gradually increased, whereas its lumen diameter decreased. The width of vascular bundles and the length, width, double-wall thickness, and lumen diameter of fiber markedly decreased from the bottom to the top. Therefore, B. pervariabilis is an ideal raw material for pulping and papermaking, and its performance is close to that of moso bamboo.


Sign in / Sign up

Export Citation Format

Share Document