scholarly journals Incorporation of Sukkari Date in Probiotic-Enriched Fermented Camel Milk Improves the Nutritional, Physicochemical, and Organoleptical Characteristics

Fermentation ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 5
Author(s):  
Thamer Aljutaily ◽  
Hassan Barakat ◽  
Mahmoud M. A. Moustafa ◽  
Medhat Rehan

Camel milk and dates are well-known for their great nutritional and therapeutical benefits. Therefore, the study aimed to combine the benefits of fermented camel milk (FCM) and Sukkari date (SKD) in a naturally sweetened FCM. Six treatments of FCM using ABT-5 cultures with 0, 5, 7.5, 10, 12.5, and 15% SKD were carried out. Chemical, physicochemical, rheological properties were studied, while organoleptical attributes and probiotic strains viability were monitored during cold storage (4 °C) up to 15 days. Results showed that fortification with SKD increased total solids (TS), ash, dietary fiber, and carbohydrate content compared to plain FCM. Water holding capacity (WHC) values increased with low and medium SKD levels then decreased with high SKD levels. Minerals such as K, P, Mg, Zn, Fe, and Cu were significantly increased, while Na was significantly decreased. Increased SKD levels in FCM resulted in significant increases in total phenolic content (TPC), total flavonoids (TF), total flavonols (TFL), and antioxidant activity (AOA). Instrumental color analysis exhibited a significant change in L*, b*, BI, and ∆E due to adding SKD in a dose-dependent manner. The viability of Streptococcus thermophiles, Lactobacillus acidophilus, and Bifidobacterium bifidum was increased by adding low and medium SKD levels, resulting in a higher number than the accepted threshold for a probiotic effect. Adding 10 and 12.5% SKD recorded the best-balanced flavor score at the beginning and after up to 15 days of storage, respectively. Conclusively, the current study revealed that fortification with SKD at 7.5–12.5% improved the nutritional quality without adverse effects on the technological, organoleptic characteristics, and probiotics viability and provided acceptable, nutritious, and healthy benefits to FCM.

Author(s):  
Hadi Shariati ◽  
Mohammad Hassanpour ◽  
Gholamreza Sharifzadeh ◽  
Asghar Zarban ◽  
Saeed Samarghandian ◽  
...  

Objective: The present study has been carried out to evaluate the diuretic and antioxidant properties of pine herb in an animal model. Materials and Methods: 45 adult male rats were randomly divided into nine groups including: groups I (the negative control), groups II (positive control, furosemide 10 mg/kg), groups III to VIII (treatment groups received 100, 200, 400 mg/kg of the aqueous extracts of bark and fruit) and group IX received the combination of aqueous extract of bark (100 mg/kg) and the fruit (100 mg/kg). The urine output, glomerular filtration rate (GFR), electrolytes, urea, and creatinine levels were evaluated . Furthermore, the phenolic content and antioxidant activity of both extracts were also assessed using 2, 2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and Folin–Ciocalteu methods. Results: The aqueous extracts of the pine bark and fruit increased the urinary output in a dose-dependent manner. The combination of the two extracts compared to the other extracts alone significantly increased the serum potassium level. This study also showed each extract increase creatinine clearance in a dose-dependent manner (p<0.01 and p<0.05). The increase of GFR in the combination group was not significant. The current data showed a significant increase in the total phenolic content in pine bark extract in compared with the fruit extract. Conclusion: The pine bark and fruit can be useful in the prevention and treatment of kidney stones due to the high antioxidant activity.


Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 247 ◽  
Author(s):  
Teerapat Rodboon ◽  
Seiji Okada ◽  
Prasit Suwannalert

The anti-melanogenic bioactivities of phytophenolic compounds have been well recognized. Riceberry rice contains a rich source of phenolic compounds that act as melanin inhibitors through their antioxidant and anti-tyrosinase properties. Germination has been shown to be an effective process to improve targeted phenolic compounds. In this study, germinated riceberry rice extract was tested for antioxidant activity. Total phenolic content was determined while the tyrosinase inhibitory effect was screened by the in vitro mushroom tyrosinase assay. Cytotoxicity of germinated riceberry rice extract was investigated in B16 cells before evaluating its activities on cellular tyrosinase, melanogenesis, melanin excretion, morphological appearance, and cellular oxidants. Germinated riceberry rice extract showed increased potency of antioxidants and was also twice as effective for mushroom tyrosinase inhibition when compared with ungerminated riceberry rice extract. In B16 cells, the extract inhibited cellular tyrosinase, melanogenesis, and cellular oxidants in a dose-dependent manner when compared with untreated cells. Germinated riceberry rice extract also displayed an effect on B16 cells morphology by reducing the number of melanin- containing cells and their dendriticity. Additionally, the germination of riceberry rice dominantly enhanced two phenolic acids, protocatechuic acid and vanillic acid, which have the potential for antioxidant-associated hyperpigmentation control. Thus, the restricted germination of riceberry rice tended to promote protocatechuic acid and vanillic acid, which dominantly displayed antioxidants and tyrosinase-related melanogenic inhibition.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Moe Pwint Phyu ◽  
Jitbanjong Tangpong

Thunbergia laurifolia(linn., TL), a natural phenolic compound, has been reported to have many benefits and medicinal properties. The current study ascertains the total phenolic content present in TL aqueous leaf extract and also examines the antioxidant ability of the extract in preserving acetylcholinesterase (AChE) activity of mice exposed to leadin vivoandin vitromodel. Mice were given lead acetate (Pb) in drinking water (1 g/L) together with TL 100 and 200 mg/kg/day. The result showed that Pb induced AChE dysfunction in bothin vitroandin vivostudies. TL significantly prevented Pb induced neurotoxicity in a dose-dependent manner which was indicated by comparatively better performance of TL treated mice in Morris Water Maze Swimming Test and increased AChE activity in the tissue sample collected from the brains of these mice. TL also exhibited the greatest amount of phenolic content, which has a significant positive correlation with its antioxidant capacity (P<0.05). Taken together, these data suggested that the total phenolic compounds in TL could exhibit antioxidant and in part neuroprotective properties. It may play a potential treatment strategy for Pb contamination.


2021 ◽  
Vol 14 (8) ◽  
pp. 761
Author(s):  
Hernán Villota ◽  
Manuel Moreno-Ceballos ◽  
Gloria A. Santa-González ◽  
Diego Uribe ◽  
Isabel Cristina Henao Castañeda ◽  
...  

Colorectal cancer is one of the leading death-related diseases worldwide, usually induced by a multifactorial and complex process, including genetic and epigenetic abnormalities and the impact of diet and lifestyle. In the present study, we evaluated the biological impact of two of the main coffee polyphenols, chlorogenic acid (CGA) and caffeic acid (CA), as well as two polyphenol-rich coffee extracts (green coffee extract and toasted coffee Extract) against SW480 and SW620 colorectal cancer cells. First, the total phenolic content and the antioxidant capability of the extracts were determined. Then, cytotoxicity was evaluated by MTT and SBR. Finally, a wound healing assay was performed to determine the impact on the cell migration process. The results showed a cytotoxic effect of all treatments in a time and dose-dependent manner, which decreased the viability in both cell lines at 24 h and 48 h; likewise, the migration capability of cells decreased with low doses of treatments. These results suggest the potential of coffee to modulate biological mechanisms involved in colorectal cancer development; however, more studies are required to understand the mechanistic insights of these observations.


Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 763 ◽  
Author(s):  
Marina Jovanović ◽  
Marija Petrović ◽  
Jelena Miočinović ◽  
Snežana Zlatanović ◽  
Jovanka Laličić Petronijević ◽  
...  

To meet the demand for new functional foods in line with the trend of sustainable development, a novel probiotic yogurt fortified with 1%, 3%, and 5% apple pomace flour (APF) added immediately after inoculation with Lactobacillus acidophilus, Streptococcus thermophilus, and Bifidobacterium bifidum was developed. Upon fermentation in the presence of APF, a number of probiotic strains remained within the required range, while the syneresis of enriched yogurts was reduced up to 1.8 times in comparison to the control. Supernatants (i.e., extracted whey) obtained from yogurts with 1%, 3%, and 5% APF respectively had 1.4-, 1.8-, and 2.3-fold higher total phenolic content (TPC) than the control, 3.3-, 4.7-, and 8.0-fold higher radical scavenging (DPPH), and 1.3-, 1.6-, and 1.7-fold higher reducing activity (FRAP). Also, probiotic yogurt supernatants (3% and 5%) inhibited colon cancer cells’ viability (HCT 116, 12% and 17%; SW-620, 13% and 19%, respectively). The highest firmness, cohesiveness, and viscosity index values, and the highest scores for color and taste, were obtained for yogurt with 3% APF, indicating that this is the optimal APF amount for the production of novel yogurt with functional properties.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Choon Young Kim ◽  
Qi-Ming Yu ◽  
Hyun-Joo Kong ◽  
Joo-Yeon Lee ◽  
Kyung-Mi Yang ◽  
...  

The purpose of this study is to investigate the effect of Agrimonia pilosa Ledeb. extract (APLE) on lipopolysaccharide- (LPS-) induced cell damage in hepatocytes with a focus on antioxidant and anti-inflammatory activities. Total antioxidant and anti-inflammatory activities of APLE itself were analyzed and phytochemical analysis was performed. Moreover, inhibitory effects of APLE on LPS-induced oxidative stress and inflammation were assessed in human HepG2 hepatocytes. APLE was found to exert α,α-diphenyl-β-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and nitrite scavenging activities and reducing power in a dose-dependent manner. The total phenolic and flavonoid contents of APLE were 44.30 ± 1.61 mg GAE/g and 29.65 ± 1.81 mg QE/g, respectively. HPLC analysis revealed that gallic acid is the major phenolic compound in APLE, followed by rutin, genistein, taxifolin, quercetin, luteolin, and apigenin, in descending order. Treatment of 100 and 200 μg/mL APLE significantly reduced LPS-stimulated intracellular reactive oxygen species production to the basal level without any cytotoxicity. Oppositely, APLE reversed LPS-suppressed expression of glutathione peroxidase gene and protein. Consistent with this result, APLE suppressed LPS-triggered expression of proinflammatory cytokine genes in a dose-dependent manner. These results reinforce the fact that the antioxidant and anti-inflammatory activity of APLE helps protect hepatocytes from LPS. Thus, APLE may be utilized as a bioactive ingredient in functional foods.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 716
Author(s):  
Hassan Barakat

Revalorization of Adansonia digitata L. “Baobab” pulp flour (BPF) to produce a notorious and functional cake in the current study was assessed. Wheat flour (WF 72%) was partially substituted by BPF at 5, 10, and 15% to prepare composite flour (WF + BPF) for potential cake manufacturing. Approximate chemical composition, macro- and microelements content, amino acids (AAs), total phenolic content (TPC), and antioxidant activity (AOA) of partially substituted composite flour (WF + BPF) were determined. The rheological properties of the composite flours were assessed using MIXOLAB. Moreover, an organoleptic evaluation of the baked cakes was performed with 20 trained panelists. The substitution with BPF significantly increased the total ash and crude fiber content in composite flour in a level-dependent manner, while moisture, crude fat, crude protein, available carbohydrates contents, and energy values were not significantly changed. Interestingly, macroelements such as Ca, K, and P were significantly increased, while Na was significantly decreased, whereas Mg content was not significantly changed. Similarly, microelements such as Zn, Fe, and Cu increased with the increase of BPF substitution. Significant increases in TPC and AOA were found by increasing the substitution with BPF. The biological value (BV), essential amino acid index (EAAI), protein efficiency ratio (PER), as well as essential amino acids (EAAs) requirement index (RI) were positively improved in WF + BPF. Adding BPF up to 10% not only improved the water absorption, α-amylase activity, and viscosity, but also caused a slight weakness in the gluten network, to produce a composite flour suitable for cake making. Conclusively, this study revealed that fortification with BPF up to 5–10% improved the nutritional quality without adverse effects on technological, and organoleptic characteristics and providing economic, commercial, and health benefits.


Author(s):  
Uddipak Rai ◽  
Ashok Kumar Pattnaik ◽  
Sanjay Singh

<p><strong>Objective: </strong>To evaluate the antiulcer<strong> </strong>activity of the most active sub-fraction of <em>Buchanania lanzan</em> Spreng. leaves methanolic extract (BLE).</p><p><strong>Methods: </strong>The antioxidant activity of BLE fractions and sub-fractions has been assayed to determine the most active sub-fraction by using <em>in vitro </em>antioxidant<em> </em>methods like hydrogen peroxide free radical scavenging assay, hydroxyl radical scavenging assay, DPPH (1, 1-diphenyl-2-picryl hydrazyl) radical scavenging activity, total flavonoid and total phenolic content estimation. Then, the antiulcerogenic activity of most active sub-fraction of BLE (50 and 100 mg/kg, b.w., orally) was evaluated employing<strong> a</strong>spirin+pylorus ligation-induced (APL) and HCl/ethanol-induced (HE) gastric ulcer models in rats, and histopathological examination of stomach tissues of rats.</p><p><strong>Results: </strong>The most active sub-fraction of BLE exerted a significant (<em>P&lt;</em>0.01) dose-dependent decrease in the ulcerative lesion index produced by APL and HE ulcer models in rats as compared to the standard drugs omeprazole (30 mg/kg, b.w. orally) and ranitidine (32 mg/kg, b.w. orally) respectively. The reduction in gastric fluid volume, total acidity and an increase in the pH of the gastric fluid in APL treated rats proved the antisecretory activity of most active subfraction of BLE. From histopathological examination, it was found that in tissues of both the models that received pretreatment with most activesub-fraction showed better protection of the gastric mucosa in a dose-dependent manner as indicated by reduction or absence of mucosal erosion and infiltration of leucocytes.</p><p><strong>Conclusion: </strong>These results suggest that leaves of <em>Buchanania lanzan </em>Spreng.<em> </em>possess potential antiulcer activity, which may be attributed to its antioxidant mechanism of action.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Kittipot Sirichaiwetchakoon ◽  
Gordon Matthew Lowe ◽  
Sajeera Kupittayanant ◽  
Seekaow Churproong ◽  
Griangsak Eumkeb

Pluchea indica (L.) Less. (P. indica) tea has been used for a health-promoting drink, especially in Southeast Asia. The effect of P. indica tea (PIT) on amelioration of hyperglycemia; dyslipidemia that was total cholesterol (TC), LDL-cholesterol (LDL-C), HDL-cholesterol (HDL-C), and triglyceride (TG); and obesity in high fat diet-induced (HFD) mice was investigated. Oral glucose tolerance test (OGTT) displayed that PIT at 400 and 600 mg/kg orally ameliorated hyperglycemia with a dose-dependent manner compared to the untreated group. Moreover, PIT at these dosages exhibited significantly lower TC, LDL-C, TG, and perigonadal fat weight in HFD treated mice compared to HFD mice (P<0.05) with a dose-dependent manner. In contrast, HDL-C was higher than in the HFD group, but not a significant difference (P>0.05). The PIT chemical analysis results demonstrated that PIT contained total phenolic content (TPC), total flavonoid content (TFC), 4-O-caffeoylquinic acid (4-CQ), 5-O-caffeoylquinic acid (5-CQ), 3,4-O-dicaffeoylquinic acid (3,4-CQ), 3,5-O-dicaffeoylquinic acid (3,5-CQ), 4,5-O-dicaffeoylquinic acid (4,5-CQ), beta-caryophyllene, and gamma-gurjunene that may play an important role in inhibiting hyperlipidemia and hyperglycemia. Also, histological analysis expressed that the mean area and amount of perigonadal fat adipocytes of PIT treated groups were significantly lower and higher than the HFD group (P<0.05), respectively. The toxicity test of PIT at 600 mg/kg/day in mice showed that serum creatinine, alanine transaminase (ALT), alkaline phosphatase (ALP), and complete blood count (CBC) levels of HFD and PIT treated groups were not significantly different compared to the normal control diet group (NCD) (P>0.05). These results suggest that PIT does not become toxic to the kidney, liver, and blood. In conclusion, PIT has the potential to develop into healthy food supplement or medicine for the prevention and treatment of hyperglycemic, hyperlipidemic, and obese patients.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Paloma López-Montemayor ◽  
Judith Zavala ◽  
María Dolores Montalvo-Parra ◽  
Guillermo Isaac Guerrero-Ramírez ◽  
Karla Mayolo-Deloisa ◽  
...  

Background. Sedum dendroideum has antioxidant effects that are beneficial for different diseases. We aimed to analyze the antiproliferative activity of S. dendroideum in human pterygium fibroblasts (HPFs). Methods. HPFs were treated for 24 h with 0–1000 μg/mL of S. dendroideum lyophilized to analyze its effect on cell viability using the CellTiter assay. RNA from HPF treated with 250 μg/mL of S. dendroideum lyophilized was isolated, and the expression of VEGF and CTGF genes was evaluated by qPCR. A dermal fibroblast cell line (HDFa) was used as a healthy control. The total phenolic content, antioxidant activity, and chemical profile of S. dendroideum lyophilized were determined. Results. Viability of HPF decreased after 24 h treatment of S. dendroideum in a dose-dependent manner. The expression of VEGF and CTGF significantly decreased ( P < 0.01 ) in HPF treated with 250 μg/mL of S. dendroideum when compared with untreated HPF. The total phenolic concentration in the S. dendroideum lyophilized was 33.67 mg gallic acid equivalents (GAE)/g. Antioxidant activity was 384.49 mM Trolox equivalents/mL. The main phenolic compounds identified by HPLC analysis were the kaempferol-3-O-glycoside, kaempferol-3-O-rhamnoside, kaempferol-3-O-neohesperidoside-7-O-α-rhamnopyranoside, and kaempferol-3-O-glycoside-7-O-rhamnoside. Conclusions. S. dendroideum decreases the proliferation of HPF and the expression of VEGF and CTGF. The phenolic compound concentration, antioxidant activity, and phytochemical profile may play a role in these effects.


Sign in / Sign up

Export Citation Format

Share Document