scholarly journals Whey Protein Powder Analysis by Mid-Infrared Spectroscopy

Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1033
Author(s):  
Rose Saxton ◽  
Owen M. McDougal

There is an ever-expanding number of high protein dietary supplements marketed as beneficial to athletes, body builders, infant formulas, elder care, and animal feed. Consumers will pay more for products with high protein per serving data on their nutritional labels, making the accurate reporting of protein content critical to customer confidence. The Kjeldahl method (KM) is the industry standard to quantitate dairy proteins, but the result is based on nitrogen content, which is an approximation of nitrogen attributable to protein in milk. Product tampering by third-party manufacturers is an issue, due to the lack of United States Food and Drug Administration regulation of nutraceutical products, permitting formulators to add low-cost nitrogen-containing components to artificially inflate the KM approximated protein content in products. Optical spectroscopy is commonly used for quality control measurements and has been identified as having the potential to complement the KM as a more nuanced testing measure of dairy protein. Mid-infrared (MIR) spectroscopy spectra of eight protein standards provided qualitative characterization of each protein by amide I and amide II peak absorbance wavenumber. Protein doping experiments revealed that as protein amounts were increased, the amide I/II peak shape changed from the broad protein powder peaks to the narrower peaks characteristic of the individual protein. Amino acid doping experiments with lysine, glutamic acid, and glycine, determined the limit of detection by MIR spectroscopy as 25%, suggesting that MIR spectroscopy can provide product quality assurance complementary to dairy protein measurement by the KM.

2021 ◽  
Author(s):  
Rose Saxton

There is an ever-expanding number of high protein dietary supplements marketed as beneficial to athletes, body builders, infant formulas, elder care, and animal feed. Consumers will pay more for products with high protein per serving data on their nutritional labels, making the accurate reporting of protein content critical to customer confidence. The Kjeldahl Method (KM) is the industry standard to quantitate dairy proteins, but the result is based on nitrogen content, which is an approximation of nitrogen attributable to protein in milk. Optical spectroscopy is commonly used for quality control measurements and has been identified as having the potential to complement the KM as a more nuanced testing measure of dairy protein. Infrared (IR) spectroscopy offers advantages over the KM in that IR provides an accurate representation of protein content in dairy products, and the results can be achieved very quickly. Protein analysis by IR has been used to study protein degradation in aged cheeses, and milk whey powder adulteration in whey protein concentrate supplements. The hypothesis of this thesis is that if mid-infrared (MIR) spectroscopy can be used to characterize individual whey proteins, then MIR should be applicable to qualitative analysis of protein powders and quality control monitoring of protein powder products for adulteration by inexpensive protein or amino acids. Protein powder analysis by KM revealed that the calculated total percent protein of the five protein powders tested was lower than the value stated on the product label, the percent variation between label protein content and that of the KM ranged from 2.9% to 9.5%. MIR spectroscopy spectra of four whey protein standards and four other protein standards provided qualitative characterization of each protein by amide I and amide II peak absorbance wavenumber. Product tampering by third-party manufacturers is an issue, due to the lack of United States Food and Drug Administration regulation of nutraceutical products, permitting formulators to add low-cost nitrogen-containing components to artificially inflate the KM approximated protein content of the products. Protein powders have been found to be doped with the amino acids glycine, leucine, and glutamic acid and inexpensive proteins, like bovine serum albumin. Controlled doping experiments were conducted with each of the above listed adulterants to assess the effectiveness of MIR spectroscopy to rapidly detect product tampering. Protein doping experiments revealed that as BSA amounts were increased, the amide I/II peak shape changed from the broad protein powder peaks to the narrower BSA peaks. Amino acid doping experiments revealed that the limit of detection for MIR spectroscopy, for the three amino acids used in this study, is 25%. MIR spectroscopy results may offer product quality assurance that is complementary to dairy protein measurement by the KM.


2020 ◽  
Author(s):  
Aida Karray ◽  
Amei Ktata ◽  
Adel Sayari

Abstract Background : Tunisia has natural resources favorable to fishing with a coastline that extends for a total length of 1,300 kilometres. The large quantities processed show that tuna canneries generate an important amounts of discarded high quality species. These wastes are, of course, problems, but they also offer excellent opportunities for biotechnological exploitation. The disposal of these wastes has always been expansive and has often a harmful impact on the environment, but thanks to the evolution of techniques and the development of markets, it is now possible to transform this waste stream into useful and marketable products. Results: In the present work, we focused primary on the characterization of the red muscles of a tuna cannery for inclusion in the formulation of young dog’s wet food. The composition of these co-products indicates a high protein content (80%), and a moderate fat and mineral content (11% and 8%, respectively). Nevertheless, the carbohydrate content in the red muscles of this fish remains low (2%). To increase the carbohydrate content whish constitute the principal energy source and fiber proportion to improve product digestibility by the animals, cereals (maize flour and rice flour) were used. Four formulae were tested, using the same manufacturing process. thA physicochemical study of the finished products was carried out and the Limit Date of Consumption was determined and estimated to 3 years and 3 months. Microbiological analyses were carried out to ensure the safety of the finished product and the results showed the absence of pathogens and the compliance of the product with current standards. Conclusion: Thanks to their high protein content, tuna discarded products represent an important source for the development of a new animal feed product, including the young dog.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1879
Author(s):  
Oladipupo Q. Adiamo ◽  
Yasmina Sultanbawa ◽  
Daniel Cozzolino

In recent times, the popularity of adding value to under-utilized legumes have increased to enhance their use for human consumption. Acacia seed (AS) is an underutilized legume with over 40 edible species found in Australia. The study aimed to qualitatively characterize the chemical composition of 14 common edible AS species from 27 regions in Australia using mid-infrared (MIR) spectroscopy as a rapid tool. Raw and roasted (180 °C, 5, 7, and 9 min) AS flour were analysed using MIR spectroscopy. The wavenumbers (1045 cm−1, 1641 cm−1, and 2852–2926 cm−1) in the MIR spectra show the main components in the AS samples. Principal component analysis (PCA) of the MIR data displayed the clustering of samples according to species and roasting treatment. However, regional differences within the same AS species have less of an effect on the components, as shown in the PCA plot. Statistical analysis of absorbance at specific wavenumbers showed that roasting significantly (p < 0.05) reduced the compositions of some of the AS species. The results provided a foundation for hypothesizing the compositional similarity and/or differences among AS species before and after roasting.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1186
Author(s):  
Fidel Toldrá ◽  
Leticia Mora

Foods and their industry by-products constitute very good sources of bioactive peptides, which can be naturally generated during processing but are also extensively produced through enzymatic hydrolysis, microbial fermentation, and even during gastrointestinal digestion in the human body [...]


2021 ◽  
Vol 13 (12) ◽  
pp. 2265
Author(s):  
Jonathan Sanderman ◽  
Kathleen Savage ◽  
Shree Dangal ◽  
Gabriel Duran ◽  
Charlotte Rivard ◽  
...  

A major limitation to building credible soil carbon sequestration programs is the cost of measuring soil carbon change. Diffuse reflectance spectroscopy (DRS) is considered a viable low-cost alternative to traditional laboratory analysis of soil organic carbon (SOC). While numerous studies have shown that DRS can produce accurate and precise estimates of SOC across landscapes, whether DRS can detect subtle management induced changes in SOC at a given site has not been resolved. Here, we leverage archived soil samples from seven long-term research trials in the U.S. to test this question using mid infrared (MIR) spectroscopy coupled with the USDA-NRCS Kellogg Soil Survey Laboratory MIR spectral library. Overall, MIR-based estimates of SOC%, with samples scanned on a secondary instrument, were excellent with the root mean square error ranging from 0.10 to 0.33% across the seven sites. In all but two instances, the same statistically significant (p < 0.10) management effect was found using both the lab-based SOC% and MIR estimated SOC% data. Despite some additional uncertainty, primarily in the form of bias, these results suggest that large existing MIR spectral libraries can be operationalized in other laboratories for successful carbon monitoring.


Author(s):  
D.S. Tazhbaeva ◽  
◽  
M.V. Kovalenko ◽  

Linear-weight indicators of pilengas growth were analyzed when using feed with different protein content. When fed with granulated high – protein feed (52%), the absolute increase was 8.7 g, and the average daily increase was 0.29 g/day. Feed with a protein content of 45% showed less growth results (absolute-4.4 g, average daily-0.15 g/day). This result is due to the high content of protein, fat, vitamins, minerals and trace elements.


Revista CERES ◽  
2017 ◽  
Vol 64 (2) ◽  
pp. 159-166 ◽  
Author(s):  
Helton Santos Pereira ◽  
Renata Cristina Alvares ◽  
Leonardo Cunha Melo ◽  
Antônio Félix da Costa ◽  
Hélio Wilson Lemos de Carvalho

ABSTRACT The objectives of this work were to study the genetic variability and the interaction between genotypes and environments for cooking time and protein content of bean grains as well as to identify elite lines of Carioca grain type with short cooking time, high protein content and high adaptability and stability for these two traits. Sixteen experiments were conducted in a complete randomized block design with three replications during the rainy, dry and winter seasons, in Goiás, Distrito Federal, Pernambuco, Sergipe, Bahia and Paraná States, in 2009 and 2010. Each trial was composed by 16 elite lines of Carioca grain type and the data of cooking time and protein content were obtained. Data were submitted to analysis of variance and to stability and adaptability analysis, according to the methodology proposed by Annichiarico. Genetic variability was found for cooking time and for protein content among Carioca common bean elite lines; however, for protein content this variability is lower. The environmental effect is important for the expression of these traits and is larger than the genetic effect. The interaction between genotypes and environments is important for cooking time and for protein content of common beans. The lines CNFC 11951 and CNFC 11962 presents short cooking time, high protein content and high stability and adaptability for both traits.


Food Control ◽  
2016 ◽  
Vol 66 ◽  
pp. 79-86 ◽  
Author(s):  
Huseyin Ayvaz ◽  
Andrea Sierra-Cadavid ◽  
Didem P. Aykas ◽  
Brett Mulqueeney ◽  
Scott Sullivan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document