scholarly journals Characterization of Macro- and Microalgae Extracts Bioactive Compounds and Micro- and Macroelements Transition from Algae to Extract

Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2226
Author(s):  
Ernesta Tolpeznikaite ◽  
Vadims Bartkevics ◽  
Modestas Ruzauskas ◽  
Renata Pilkaityte ◽  
Pranas Viskelis ◽  
...  

The aim of this study was to evaluate the characteristics of macroalgae (Cladophora rupestris, Furcellaria lumbricalis, Ulva intestinalis) and microalgae (Arthrospira platensis (Sp1, Sp2), Chlorella vulgaris) extracts, including micro- and macroelement transition to extract, antioxidant, antimicrobial properties, the concentrations of chlorophyll (-a, -b), and the total carotenoid concentration (TCC). In macroalgae, the highest TCC and chlorophyll content were found in C. rupestris. In microalgae, the TCC was 10.1-times higher in C. vulgaris than in Sp1, Sp2; however, the chlorophyll contents in C. vulgaris samples were lower. A moderate negative correlation was found between the chlorophyll-a and TCC contents (r = −0.4644). In macroalgae extract samples, C. rupestris and F. lumbricalis showed the highest total phenolic compound content (TPCC). DPPH antioxidant activity and TPCC in microalgae was related to the TCC (r = 0.6191, r = 0.6439, respectively). Sp2 extracts inhibited Staphylococcus haemolyticus; C. rupestris, F. lumbricalis, U. intestinalis, and Sp2 extracts inhibited Bacillus subtilis; and U. intestinalis extracts inhibited Streptococcus mutans strains. This study showed that extraction is a suitable technology for toxic metal decontamination in algae; however, some of the desirable microelements are reduced during the extraction, and only the final products, could be applied in food, feed, and others.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Norma Patricia Silva-Beltrán ◽  
Saul Ruiz-Cruz ◽  
Luis Alberto Cira-Chávez ◽  
María Isabel Estrada-Alvarado ◽  
José de Jesús Ornelas-Paz ◽  
...  

The purpose of this study was to evaluate the antioxidant and antimicrobial properties of extracts of different fractions of two tomato plant cultivars. The stems, roots, leaves, and whole-plant fractions were evaluated. Tomatine and tomatidine were identified by HPLC-DAD. The leaf extracts from the two varieties showed the highest flavonoids, chlorophyll, carotenoids, and total phenolics contents and the highest antioxidant activity determined by DPPH, ABTS, and ORAC. A positive correlation was observed between the antioxidant capacities of the extracts and the total phenolic, flavonoid, and chlorophyll contents. The Pitenza variety extracts inhibited the growth of pathogens such asE. coliO157:H7,SalmonellaTyphimurium, Staphylococcus aureus, andListeria ivanovii, yielding inhibition halos of 8.0 to 12.9 mm in diameter and MIC values of 12.5 to 3.125 mg/mL. These results suggest that tomato plant shows well potential as sources of various bioactive compounds, antioxidants, and antimicrobials.


Author(s):  
Oluwasegun Victor Omotoyinbo ◽  
Emmanuel Olumide Awojulu ◽  
David Morakinyo Sanni

This study evaluated the phytochemical compositions, antioxidant properties, chlorophyll content and anti-tyrosinase activity of methanol leaf extracts of two tomato varieties, Lycopersicon esculentum (var. Eva F1) and Lycopersicon esculentum Mill (var. Hausa). The dried pulverized of the plant’s leaves were extracted by decoction and mild agitation. Phytochemicals such as flavonoids, tannin, glycoside, saponin, terpenoid and anthraquinone were present in the extracts of both varieties examined, while alkaloid and phlobatannin were confirmed absent in the extracts. The presence of steroid was observed in var. Eva F1 but absent in var. Hausa. Total phenolic content (TPC) and total flavonoid content (TFC) of var. Eva F1 were 505.9 ± 2.61 mg GAE/ge, and 35.5 ± 1.64 mg RE/ge, while var. Hausa recorded a TPC and TFC value of 344.3 ± 2.01 and 7.8 ± 0.15 mg RE/ge respectively. The chlorophyll content of the extracts were 6.6 ± 0.02 mg/ge (chlorophyll a), 5.7 ± 0.05 mg/ge (chlorophyll b) and 12.6 ± 0.14 mg/ge (total chlorophyll content) for Eva F1 variety, while the chlorophyll contents for var. Hausa were 7.6 ± 0.32 mg.ge (chlorophyll a), 5.6 ± 0.06 mg/ge (chlorophyll b) and 13.7 ± 0.14 mg/ge. Eva F1 and Hausa showed percentage inhibition of 76.3 % and 61.2 % at 400 μg/mL. The IC50 value of var. Eva F1 and var. Hausa were 110 μg/mL and 160 μg/mL. The inhibition constant (KI) of var. Eva F1 and var. Hausa, were 0.006 and 0.016 μg/mL, respectively, and both extracts showed partial competitive inhibition. Hence, this confirms the phytoprotective and tyrosinase inhibitory properties of tomato plant leaves.


2020 ◽  
Vol 21 (8) ◽  
pp. 681-701
Author(s):  
Fatma Kazdal ◽  
Fatemeh Bahadori ◽  
Burak Celik ◽  
Abdulselam Ertas ◽  
Gulacti Topcu

Background: The role of Fe+2, Cu+2 and Zn+2 in facilitating aggregation of Amyloid β (Aβ) and consequently, the progression of Alzheimer's disease (AD) is well established. Objective: Development of non-toxic metal chelators is an emerging era in the treatment of AD, in which complete success has not been fully achieved. The purpose of this study was to determine plant extracts with high metal chelator and to encapsulate them in nano-micellar systems with the ability to pass through the Blood Brain Barrier (BBB). Method: Extracts of 36 different Anatolian plants were prepared, total phenolic and flavonoid contents were determined, and the extracts with high content were examined for their Fe+2, Cu+2 and Zn+2 chelating activities. Apolipoprotein E4 (Apo E) decorated nano-formulations of active extracts were prepared using Poly (Lactide-co-Glycolide) (PLGA) (final product ApoEPLGA) to provide BBB penetrating property. Results: Verbascum flavidum aqueous extract was found as the most active sample, incubation of which, with Aβ before and after metal-induced aggregation, resulted in successful inhibition of aggregate formation, while re-solubilization of pre-formed aggregates was not effectively achieved. The same results were obtained using ApoEPLGA. Conclusion: An optimized metal chelator nano-formulation with BBB penetrating ability was prepared and presented for further in-vivo studies.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 608
Author(s):  
Fairuz Fatini Mohd Yusof ◽  
Jamilah Syafawati Yaacob ◽  
Normaniza Osman ◽  
Mohd Hafiz Ibrahim ◽  
Wan Abd Al Qadr Imad Wan-Mohtar ◽  
...  

The growing demand for high value aromatic herb Polygonum minus-based products have increased in recent years, for its antioxidant, anticancer, antimicrobial, and anti-inflammatory potentials. Although few reports have indicated the chemical profiles and antioxidative effects of Polygonum minus, no study has been conducted to assess the benefits of micro-environmental manipulation (different shading levels) on the growth, leaf gas exchange and secondary metabolites in Polygonum minus. Therefore, two shading levels (50%:T2 and 70%:T3) and one absolute control (0%:T1) were studied under eight weeks and 16 weeks of exposures on Polygonum minus after two weeks. It was found that P. minus under T2 obtained the highest photosynthesis rate (14.892 µmol CO2 m−2 s−1), followed by T3 = T1. The increase in photosynthesis rate was contributed by the enhancement of the leaf pigments content (chlorophyll a and chlorophyll b). This was shown by the positive significant correlations observed between photosynthesis rate with chlorophyll a (r2 = 0.536; p ≤ 0.05) and chlorophyll b (r2 = 0.540; p ≤ 0.05). As the shading levels and time interval increased, the production of total anthocyanin content (TAC) and antioxidant properties of Ferric Reducing Antioxidant Power (FRAP) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) also increased. The total phenolic content (TPC) and total flavonoid content (TFC) were also significantly enhanced under T2 and T3. The current study suggested that P.minus induce the production of more leaf pigments and secondary metabolites as their special adaptation mechanism under low light condition. Although the biomass was affected under low light, the purpose of conducting the study to boost the bioactive properties in Polygonum minus has been fulfilled by 50% shading under 16 weeks’ exposure.


2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110233
Author(s):  
Masahiro Saiki ◽  
Naomichi Takemoto ◽  
Maki Nagata ◽  
Masako Matsumoto ◽  
Yhiya Amen ◽  
...  

In recent years, entomophagy has attracted increased attention, as it was recommended as a potential source of food by the Food and Agriculture Organization of the United Nations. In Japan, Oxya yezoensisis one of the most widely eaten insect species, but studies of its functionality as a food are limited. In this study, we reported the optimal characterization of the total phenolic compounds in methanolic extract (OME) and different fractions of OME. Additionally, the antioxidant and antiallergic activities of the OME fractions were evaluated. The results showed that the ethyl acetate-soluble fraction of OME has potential antioxidant activity, whereas the n-hexane-soluble fraction showed the strongest inhibition of β-hexosaminidase, which is one of the key factors in allergic reactions. It was concluded that phenolic compounds might contribute to the antioxidant activity while unsaturated fatty acids contribute to the antiallergy activity.


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Hyeon Ji Yeo ◽  
Seung-A Baek ◽  
Ramaraj Sathasivam ◽  
Jae Kwang Kim ◽  
Sang Un Park

AbstractThis study aimed to comprehensively analyze primary and secondary metabolites of three different-colored (white, pale green, and green) pak choi cultivars (Brassica rapa subsp. chinensis) using gas chromatography attached with time-of-flight mass spectrometry (GC-TOFMS) and high-performance liquid chromatography (HPLC). In total, 53 primary metabolites were identified and subjected to partial least-squares discriminant analysis. The result revealed a significant difference in the primary and secondary metabolites between the three pak choi cultivars. In addition, 49 hydrophilic metabolites were detected in different cultivars. Total phenolic and glucosinolate contents were highest in the pale green and green cultivars, respectively, whereas total carotenoid and chlorophyll contents were highest in the white cultivar. Superoxide dismutase activity, 2,2-diphenyl-1-picrylhydraz scavenging, and reducing power were slightly increased in the white, pale green, and green cultivars, respectively. In addition, a negative correlation between pigments and phenylpropanoids was discovered by metabolite correlation analysis. This approach will provide useful information for the development of strategies to enhance the biosynthesis of phenolics, glucosinolates, carotenoids, and chlorophyll, and to improve antioxidant activity in pak choi cultivars. In addition, this study supports the use of HPLC and GC-TOFMS-based metabolite profiling to explore differences in pak choi cultivars.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Silvia Matiacevich ◽  
Natalia Riquelme ◽  
María Lidia Herrera

Alginate from algal biomass is used as edible film and the incorporation of antimicrobial agents improves its performance to increase the shelf-life of fresh foods. However, environmental conditions and intrinsic properties of films influence their release. The aim of this study was to investigate the effect of the concentration and type of encapsulating agent and pH of emulsions on the physical and antimicrobial properties of alginate-carvacrol films. Films containing alginate, carvacrol as antimicrobial agent, and Tween 20 or trehalose (0.25 and 0.75% w/w) as encapsulating agents were obtained from suspensions at pH 4 and pH 8. Physical characterization of emulsions and films and antimicrobial properties (E. coliandB. cinerea) was evaluated. Results showed that droplets size depended on trehalose concentration, but emulsion stability depended on pH and type of encapsulating agent, being more stable samples with trehalose at pH 4. Although films with Tween 20 presented the highest opacity, they showed the best antimicrobial properties at initial time; however, during storage time, they lost their activity before samples with trehalose and relative humidity (RH) was the principal factor to influence their release. Therefore, sample formulated with 0.25% trehalose at pH 4 and stored at 75% RH had the best potential as edible film for fresh fruits.


2009 ◽  
Vol 14 (1) ◽  
pp. 27-31 ◽  
Author(s):  
Lamia Trabelsi ◽  
Nour Houda M’sakni ◽  
Hatem Ben Ouada ◽  
Hassen Bacha ◽  
Sadok Roudesli

Sign in / Sign up

Export Citation Format

Share Document