scholarly journals Production and Refinement of Omega-3 Rich Oils from Processing By-Products of Farmed Fish Species

Foods ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 125 ◽  
Author(s):  
Vida Šimat ◽  
Jelena Vlahović ◽  
Barbara Soldo ◽  
Danijela Skroza ◽  
Ivica Ljubenkov ◽  
...  

In this study, the effect of a four-stage chemical refining process (degumming, neutralization, bleaching, deodorization) on the quality parameters, fatty acid composition and volatile compounds of crude oils produced from processing by-products of farmed fish species (tuna, seabass and gilthead seabream) was evaluated. The quality of the oils was compared to commercially available cod liver oil on the basis of free fatty acid, peroxide value, p-anisidine, total oxidation (TOTOX), thiobarbituric acid reactive species (TBARS), oxidative stability at 80, 100 and 120 °C, tocopherol content, and volatile components, while the fatty acid profile and the proportion of polyunsaturated fatty acids (PUFAs) were used as an indicator of the nutritional values of fish oils. Quality parameters of the studied oils and oil oxidative stability were enhanced with refining and were within the limits recommended for fish oils without the loss of PUFAs. In tuna by-product refined oils, the proportion of PUFAs was over 40%, with 30% of eicosapentaenoic and docosahexaenoic fatty acids. The volatile compounds of the oils were quantified (in mg/kg) and major components were 2,4-heptadienal, pentadecane, 2,4-decadienal, 2,4-nonadienal and dodecane. The use of aquaculture by-products as an alternative source for fish oil production could contribute to a more sustainable and profitable aquaculture production, providing economic benefits for the producers and setting new standards for a fish by-product disposal strategy.

2008 ◽  
Vol 3 (2) ◽  
pp. 89
Author(s):  
Alimuddin Alimuddin ◽  
Goro Yoshizaki ◽  
Toshio Takeuchi ◽  
Odang Carman

Eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) have important nutritional benefits in humans. EPA and DHA are mainly derived from fish, but the decline in the stocks of major marine capture fishes could result in these fatty acids being consumed less. Farmed fish could serve as promising sources of EPA and DHA, but they need these fatty acids in their diets. Generation of fish strains that are capable of synthesizing enough amounts of EPA/DHA from the conversion of α-linolenic acid (LNA, 18:3n-3) rich oils can supply a new EPA/DHA source. This may be achieved by over-expression of genes encoding enzymes involved in HUFA biosynthesis. In aquaculture, the successful of this technique would open the possibility to reduce the enrichment of live food with fish oils for marine fish larvae, and to completely substitute fish oils with plant oils without reducing the quality of flesh in terms of EPA and DHA contents. Here, three genes, i.e. Δ6-desaturase-like (OmΔ6FAD), Δ5-desaturase-like (OmΔ5FAD) and elongase-like (MELO) encoding EPA/DHA metabolic enzymes derived from masu salmon (Oncorhynchus masou) were individually transferred into zebrafish (Danio rerio) as a model to increase its ability for synthesizing EPA and DHA. Fatty acid analysis showed that EPA content in whole body of the second transgenic fish generation over-expressing OmΔ6FAD gene was 1.4 fold and that of DHA was 2.1 fold higher (P<0.05) than those in non-transgenic fish. The EPA content in whole body of transgenic fish over-expressing OmΔ5FAD gene was 1.21-fold, and that of DHA was 1.24-fold higher (P<0.05) than those in nontransgenic fish. The same patterns were obtained in transgenic fish over-expressing MELO gene. EPA content was increased by 1.30-fold and DHA content by 1.33-fold higher (P<0.05) than those in non-transgenic fish. The results of studies demonstrated that fatty acid content of fish can be enhanced by over-expressing gene encoding enzymes involved in fatty acid biosynthesis, and perhaps this could be applied to tailor farmed fish as even better sources of valuable human food.


2013 ◽  
Vol 8 (9) ◽  
pp. 1934578X1300800
Author(s):  
Anna Wajs-Bonikowska ◽  
Karol Olejnik ◽  
Radosław Bonikowski ◽  
Piotr Banaszczak

Extracts and essential oils from seeds as well as essential oils from cone scales and needles with twigs of the Abies koreana population were studied. An analysis of Korean fir essential oils allowed us to determine 147 volatile compounds. The identified compounds constituted 97–99% of the seed, cone and needle oils. The main volatile in the seed and needle oils was limonene (56.6% and 23.4%, respectively), while the predominant volatile in cone oils was α-pinene (51.2%). Korean fir seeds provided a rich source of both essential oil (3.8–8.5%) and extract, which was isolated with a 24.5% yield and contained numerous groups of fatty acids and phytosterols (414 μg/100g extract). The most prominent fatty acids were unsaturated, among which linoleic (41.2%) and oleic (31.2%) fatty acid were the main ones while the dominant sterols were isomers of ergostadienol and β-sitosterol. A. koreana seeds, cones and needles are a source of many volatile bioactive compounds while the seed extract, with a pleasant scent, contained not only volatiles, but also fractions rich in fatty acids and phytosterols. These facts make A. koreana essential oils and especially the seed extract potential components of cosmetics.


2020 ◽  
Vol 63 (2) ◽  
pp. 219-229
Author(s):  
Snežana Ivanović ◽  
Marija Pavlović ◽  
Ivan Pavlović ◽  
Aleksandra Tasić ◽  
Jelena Janjić ◽  
...  

Abstract. The potential of goats to produce a high-quality meat is mainly reflected in their healthy fats, low calorie intramuscular fats, saturated fats, and, especially, their high ratios of unsaturated (UFA) and saturated (SFA) fatty acids, as well as hypocholesterolemic and hypercholesterolemic fatty acids. The aim of this study was to collect and compare meat quality parameters for domestic Balkan, Alpine and Saanen goats of the same age. Samples for all tests were taken from musculus gluteus superficialis. Chemical composition, pH value, fatty acid composition, content of volatile compounds, color and overall sensory quality (appearance, texture and smell) were determined. In chemical composition, moisture, fat, protein and ash varied significantly between each of the examined groups as opposed to pH values. Furthermore, among all the examined groups a significant difference was found for fatty acids and volatile compounds. Determined ratio of polyunsaturated fatty acids (PUFAs) to SFAs was 0.089, 0.085 and 0.071 for Balkan, Alpine and Saanen goat meats, respectively. Regarding that ratio, Saanen goat meat had the most favorable characteristics. Saanen goat meat showed the highest nutritional value. On the other hand, Balkan goat meat had the lowest intramuscular fat content. Measurements of the meat color from all three groups, as well as overall acceptability, showed significant differences between breeds. Obtained results point to the impact of breed on chemical composition and fatty acid profile of goat meat.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2311 ◽  
Author(s):  
Francesca Bennato ◽  
Denise Innosa ◽  
Andrea Ianni ◽  
Camillo Martino ◽  
Lisa Grotta ◽  
...  

The aim of this study was to evaluate the development of volatile compounds in yogurt samples obtained from goats fed a dietary supplementation with olive leaves (OL). For this purpose, thirty Saanen goats were divided into two homogeneous groups of 15 goats each: a control group that received a standard diet (CG) and an experimental group whose diet was supplemented with olive leaves (OLG). The trial lasted 28 days, at the end of which the milk of each group was collected and used for yogurt production. Immediately after production, and after 7 days of storage at 4 °C in the absence of light, the yogurt samples were characterized in terms of fatty acid profile, oxidative stability and volatile compounds by the solid-phase microextraction (SPME)–GC/MS technique. Dietary OL supplementation positively affected the fatty acid composition, inducing a significant increase in the relative proportion of unsaturated fatty acids, mainly oleic acid (C18:1 cis9) and linolenic acid (C18:3). With regard to the volatile profile, both in fresh and yogurt samples stored for 7 days, the OL supplementation induced an increase in free fatty acids, probably due to an increase in lipolysis carried out by microbial and endogenous milk enzymes. Specifically, the largest variations were found for C6, C7, C8 and C10 free fatty acids. In the same samples, a significant decrease in aldehydes, mainly heptanal and nonanal, was also detected, supporting—at least in part—an improvement in the oxidative stability. Moreover, alcohols, esters and ketones appeared lower in OLG samples, while no significant variations were observed for lactones. These findings suggest the positive role of dietary OL supplementation in the production of goats’ milk yogurt, with characteristics potentially indicative of an improvement in nutritional properties and flavor.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1811
Author(s):  
Ella Aitta ◽  
Alexis Marsol-Vall ◽  
Annelie Damerau ◽  
Baoru Yang

Baltic herring (Clupea harengus membras) is one of the most abundant commercially caught fish species from the Baltic Sea. Despite the high content of fat and omega-3 fatty acids, the consumption of Baltic herring has decreased dramatically over the last four decades, mostly due to the small sizes and difficulty in processing. At the same time there is an increasing global demand for fish and fish oil rich in omega-3 fatty acids. This study aimed to investigate enzyme-assisted oil extraction as an environmentally friendly process for valorizing the underutilized fish species and by-products to high quality fish oil for human consumption. Three different commercially available proteolytic enzymes (Alcalase®, Neutrase® and Protamex®) and two treatment times (35 and 70 min) were investigated in the extraction of fish oil from whole fish and by-products from filleting of Baltic herring. The oil quality and stability were studied with peroxide- and p-anisidine value analyses, fatty acid analysis with GC-FID, and volatile compounds with HS-SPME-GC-MS. Overall, longer extraction times led to better oil yields but also increased oxidation of the oil. For whole fish, the highest oil yields were from the 70-min extractions with Neutrase and Protamex. Protamex extraction with 35 min resulted in the best fatty acid composition with the highest content of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) but also increased oxidation compared to treatment with other enzymes. For by-products, the highest oil yield was obtained from the 70-min extraction with Protamex without significant differences in EPA and DHA contents among the oils extracted with different enzymes. Oxidation was lowest in the oil produced with 35-min treatment using Neutrase and Protamex. This study showed the potential of using proteolytic enzymes in the extraction of crude oil from Baltic herring and its by-products. However, further research is needed to optimize enzymatic processing of Baltic herring and its by-products to improve yield and quality of crude oil.


2021 ◽  
Vol 11 (9) ◽  
pp. 3854
Author(s):  
Rendani Luthada-Raswiswi ◽  
Samson Mukaratirwa ◽  
Gordon O’Brien

Fishmeal is the main source of dietary protein for most commercially farmed fish species. However, fishmeal prices have been raised even further because of competition with domestic animals, shortage in world fishmeal supply, and increased demand. Increased fishmeal prices have contributed to the quest for alternatives necessary to replace fishmeal as a global research priority. A literature search was conducted using these terms on Google Scholar and EBSCOhost; fishmeal replacement in fish feeds, fishmeal alternatives in fish feeds, animal protein sources in aquaculture, insects in fish feeds, terrestrial by-products, and fishery by-products. To calculate the variation between experiments, a random effect model was used. Results indicated that different fish species, sizes, and inclusion levels were used in the various studies and showed that the use of insects, terrestrial by-products, and fishery by-products has some limitations. Despite these drawbacks, the use of animal protein sources as a replacement for fishmeal in fish diets has had a positive impact on the feed conversion ratio, variable growth rate, final weight, and survival rate of different types of fish species of different size groups. Findings also showed that some animal by-products had not been assessed as a protein source in aquaculture or animal feeds, and future studies are recommended.


2020 ◽  
Vol 71 (1) ◽  
pp. 337 ◽  
Author(s):  
B. M. Berto ◽  
R. K.A. Garcia ◽  
G. D. Fernandes ◽  
D. Barrera-Arellano ◽  
G. G. Pereira

This paper proposes to characterize and monitor the degradation of linseed oil under two oxidation conditions using some traditional oxidative and quality parameters. The experimental section of this study was divided into 2 stages. In the first one, three commercial linseed oil samples (OL1, OL2, and OL3) were characterized according to oxidative stability (90 °C) and fatty acid composition. In the second stage, the OL1 sample, selected due to its availability, was subjected to the following oxidation procedures: storage at room temperature conditions with exposure to light and air (temperature ranging from 7 to 35 °C) for 140 days and accelerated oxidation at 100 °C for 7h. Samples were collected at different time intervals and analyzed for oxidative stability (90 °C), peroxide value, and acid value. The results showed that all the samples presented a similar fatty acid profile and that the OL3 sample showed a higher induction period (p < 0.05). Regarding the oxidative degradation, the induction period of the OL1 sample reduced from 9.7 to 5.7 and 9.7 to 6.3 during 140 days of storage under room temperature and 7 h of accelerated oxidation, respectively. The end of induction period of the OL1 sample is expected to occur within 229 days according to an exponential mathematical model fitted to the induction period values at different temperatures. In addition, the OL1 sample met the limits proposed by Codex and Brazilian regulations for peroxide and acid values during the oxidation time intervals.


1998 ◽  
Vol 1998 ◽  
pp. 35-35 ◽  
Author(s):  
R.J. Dewhurst ◽  
P.J. King

Ruminant products have been criticised for the possible adverse effects of their saturated fatty acids on human health. Conversely, the omega-3 polyunsaturated fatty acids, notably those in fish oils, have been identified as beneficial components of the human diet. Earlier studies have shown that a small, but useful, amount of forage α-linolenic acid (C18:3), an omega-3 fatty acid, appears in ruminant products (Wood and Enser, 1996). The objective of the current work was to evaluate the range of α-linolenic acid concentrations in laboratory grass silages in order to assess the opportunities to modify ensiling techniques to increase the natural delivery of omega-3 fatty acid from grass silage to milk or meat.


Author(s):  
SN Mona ◽  
S Sultana ◽  
KK Ahmed ◽  
N Khan ◽  
KA Huq ◽  
...  

The research was carried out with small indigenous fish species (SIS) named mola (Amblypharyngadan mola) in monoculture system to intensify production in farmers’ homestead ponds with 50% household women involvement during June to December, 2016. Brood mola was stocked at the rate of 2, 4 and 6 m-2 with three replications in each treatment. Supplementary feed (27.1% protein) consisted of commonly available agricultural by-products was provided daily at the rate of 2% of the total biomass along with natural feed as mola is planktivorous species. Seven different water quality parameters were measured fortnightly and found within cultivable range. Gross production of mola were obtained 520.59±23.4, 599.06±258.87, 1063.94±42.87 kg ha-1 from T1, T2 and T3, respectively after 4 months’ culture period. The yield of T3 was significantly greater (P < 0.05) than T1 and T2. The highest gross production was obtained in T3 where stocking density was 6 brood mola m-2. Int. J. Agril. Res. Innov. Tech. 9(2): 23-29, December 2019


2020 ◽  
Vol 60 (14) ◽  
pp. 1745
Author(s):  
S. Siphambili ◽  
F. J. Monahan ◽  
E. G. O'Riordan ◽  
M. McGee ◽  
A. P. Moloney

Context The finishing of late-maturing bulls on grass is economically more favourable than finishing on cereal concentrates but it may have a negative effect on oxidative stability. Aim To determine the effect of varying levels of pasture feeding during the finishing period on the oxidative stability of bull beef. Methods Groups of eight late-maturing breed sired bulls were assigned to one of the following production systems: (1) pasture only for 200 days (P), (2) pasture only for 100 days followed by pasture plus 50% of the dietary dry matter (DM) intake as concentrate for 100 days (P-C50), (3) pasture plus 50% of the DM intake as concentrate for 200 days (C50), (4) pasture only for 100 days followed by ad libitum concentrates for 100 days (P-C), (5) pasture plus 50% of the DM intake as concentrate for 100 days followed by ad libitum concentrates for 100 days (C50-C) and (6) ad libitum concentrates offered indoors for 200 days (C). The M. Longissimus thoracis et lumborum muscle was excised post-slaughter for proximate, fatty acid and α-tocopherol analysis and for measurement of lipid and protein oxidation and colour stability. Results The polyunsaturated fatty acid (PUFA) concentration and proportion in muscle were higher (P &lt; 0.001) in C50 bulls compared with P, P-C50 and P-C bulls. The concentration of highly peroxidisable PUFA was at least 1.3-fold higher (P &lt; 0.001) in the muscle of C50 bulls than of C and P-C bulls whereas the proportion was at least 1.5-fold higher (P &lt; 0.001) in muscle of P, P-C50 and C50 bulls compared with C and P-C bulls. There was a higher (P &lt; 0.001) concentration of saturated fatty acids and monounsaturated fatty acids in muscle of bulls fed on concentrate in the last 100 days (P-C, C50-C and C) compared with those fed on grass (fully or partially) in the last 100 days (P, P-C50 and C50). α-Tocopherol concentration was at least 1.5-fold higher (P &lt; 0.001) in muscle of P bulls compared with C, C50-C and P-C bulls. Redness, redness stability, lipid and protein oxidation did not differ between treatments (P &gt; 0.05). Conclusions The increase in highly peroxidisable PUFA in beef, by increasing pasture in the finishing ration did not increase susceptibility to oxidation, most likely due to a concomitant increase in α-tocopherol. Implications Beef can be produced from late-maturing bulls grazing on pasture for 200 days without impacting negatively on oxidative stability.


Sign in / Sign up

Export Citation Format

Share Document