scholarly journals Integration of Bioinformatic Predictions and Experimental Data to Identify circRNA-miRNA Associations

Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 642 ◽  
Author(s):  
Martina Dori ◽  
Silvio Bicciato

Circular RNAs (circRNAs) have recently emerged as a novel class of transcripts, characterized by covalently linked 3′–5′ ends that result in the so-called backsplice junction. During the last few years, thousands of circRNAs have been identified in different organisms. Yet, despite their role as disease biomarker started to emerge, depicting their function remains challenging. Different studies have shown that certain circRNAs act as miRNA sponges, but any attempt to generalize from the single case to the “circ-ome” has failed so far. In this review, we explore the potential to define miRNA “sponging” as a more general function of circRNAs and describe the different approaches to predict miRNA response elements (MREs) in known or novel circRNA sequences. Moreover, we discuss how experiments based on Ago2-IP and experimentally validated miRNA:target duplexes can be used to either prioritize or validate putative miRNA-circRNA associations.

2021 ◽  
Author(s):  
Ken Hung-On Yu ◽  
Christina Huan Shi ◽  
Bo Wang ◽  
Savio Ho-Chit Chow ◽  
Grace Tin-Yun Chung ◽  
...  

AbstractCircular RNAs (circRNAs) are abundantly expressed in cancer. Their resistance to exonucleases enables them to have potentially stable interactions with different types of biomolecules. Alternative splicing can create different circRNA isoforms that have different sequences and unequal interaction potentials. The study of circRNA function thus requires knowledge of complete circRNA sequences. Here we describe psirc, a method that can identify full-length circRNA isoforms and quantify their expression levels from RNA sequencing data. We confirm the effectiveness and computational efficiency of psirc using both simulated and actual experimental data. Applying psirc on transcriptome profiles from nasopharyngeal carcinoma and normal nasopharynx samples, we discover and validate circRNA isoforms differentially expressed between the two groups. Compared to the assumed circular isoforms derived from linear transcript annotations, some of the alternatively spliced circular isoforms have 100 times higher expression and contain substantially fewer microRNA response elements, demonstrating the importance of quantifying full-length circRNA isoforms.


2021 ◽  
pp. gr.275348.121
Author(s):  
Ken Hung-On Yu ◽  
Christina Huan Shi ◽  
Bo Wang ◽  
Savio Ho-Chit Chow ◽  
Grace Tin-Yun Chung ◽  
...  

Circular RNAs (circRNAs) are abundantly expressed in cancer. Their resistance to exonucleases enables them to have potentially stable interactions with different types of biomolecules. Alternative splicing can create different circRNA isoforms that have different sequences and unequal interaction potentials. The study of circRNA function thus requires knowledge of complete circRNA sequences. Here we describe psirc, a method that can identify full-length circRNA isoforms and quantify their expression levels from RNA sequencing data. We confirm the effectiveness and computational efficiency of psirc using both simulated and actual experimental data. Applying psirc on transcriptome profiles from nasopharyngeal carcinoma and normal nasopharynx samples, we discover and validate circRNA isoforms differentially expressed between the two groups. Compared to the assumed circular isoforms derived from linear transcript annotations, some of the alternatively spliced circular isoforms have 100 times higher expression and contain substantially fewer microRNA response elements, demonstrating the importance of quantifying full-length circRNA isoforms.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Fei Long ◽  
Zhi Lin ◽  
Liang Li ◽  
Min Ma ◽  
Zhixing Lu ◽  
...  

AbstractColorectal cancer (CRC) is a common hereditary tumor that is often fatal. Its pathogenesis involves multiple genes, including circular RNAs (circRNAs). Notably, circRNAs constitute a new class of noncoding RNAs (ncRNAs) with a covalently closed loop structure and have been characterized as stable, conserved molecules that are abundantly expressed in tissue/development-specific patterns in eukaryotes. Based on accumulating evidence, circRNAs are aberrantly expressed in CRC tissues, cells, exosomes, and blood from patients with CRC. Moreover, numerous circRNAs have been identified as either oncogenes or tumor suppressors that mediate tumorigenesis, metastasis and chemoradiation resistance in CRC. Although the regulatory mechanisms of circRNA biogenesis and functions remain fairly elusive, interesting results have been obtained in studies investigating CRC. In particular, the expression of circRNAs in CRC is comprehensively modulated by multiple factors, such as splicing factors, transcription factors, specific enzymes and cis-acting elements. More importantly, circRNAs exert pivotal effects on CRC through various mechanisms, including acting as miRNA sponges or decoys, interacting with RNA binding proteins, and even translating functional peptides. Finally, circRNAs may serve as promising diagnostic and prognostic biomarkers and potential therapeutic targets in the clinical practice of CRC. In this review, we discuss the dysregulation, functions and clinical significance of circRNAs in CRC and further discuss the molecular mechanisms by which circRNAs exert their functions and how their expression is regulated. Based on this review, we hope to reveal the functions of circRNAs in the initiation and progression of cancer and highlight the future perspectives on strategies targeting circRNAs in cancer research.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mandana Ameli-Mojarad ◽  
Melika Ameli-Mojarad ◽  
Mahrooyeh Hadizadeh ◽  
Chris Young ◽  
Hosna Babini ◽  
...  

AbstractColorectal cancer (CRC) is the 3rd most common type of cancer worldwide. Late detection plays role in one-third of annual mortality due to CRC. Therefore, it is essential to find a precise and optimal diagnostic and prognostic biomarker for the identification and treatment of colorectal tumorigenesis. Covalently closed, circular RNAs (circRNAs) are a class of non-coding RNAs, which can have the same function as microRNA (miRNA) sponges, as regulators of splicing and transcription, and as interactors with RNA-binding proteins (RBPs). Therefore, circRNAs have been investigated as specific targets for diagnostic and prognostic detection of CRC. These non-coding RNAs are also linked to metastasis, proliferation, differentiation, migration, angiogenesis, apoptosis, and drug resistance, illustrating the importance of understanding their involvement in the molecular mechanisms of development and progression of CRC. In this review, we present a detailed summary of recent findings relating to the dysregulation of circRNAs and their potential role in CRC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ling Gao ◽  
Tingting Xia ◽  
Mingde Qin ◽  
Xiaofeng Xue ◽  
Linhua Jiang ◽  
...  

BackgroundGastric cancer is a type of malignant tumor with high morbidity and mortality. It has been shown that circular RNAs (circRNAs) exert critical roles in gastric cancer progression via working as microRNA (miRNA) sponges to regulate gene expression. However, the role and potential molecular mechanism of circRNAs in gastric cancer remain largely unknown.MethodsCircPTK2 (hsa_circ_0005273) was identified by bioinformatics analysis and validated by RT-qPCR assay. Bioinformatics prediction, dual-luciferase reporter, and RNA pull-down assays were used to determine the interaction between circPTK2, miR-196a-3p, and apoptosis-associated tyrosine kinase 1 (AATK).ResultsThe level of circPTK2 was markedly downregulated in gastric cancer tissues and gastric cancer cells. Upregulation of circPTK2 significantly suppressed the proliferation, migration, and invasion of gastric cancer cells, while circPTK2 knockdown exhibited opposite effects. Mechanically, circPTK2 could competitively bind to miR-196a-3p and prevent miR-196a-3p to reduce the expression of AATK. In addition, overexpression of circPTK2 inhibited tumorigenesis in a xenograft mouse model of gastric cancer.ConclusionCollectively, circPTK2 functions as a tumor suppressor to suppress gastric cancer cell proliferation, migration, and invasion through regulating the miR-196a-3p/AATK axis, suggesting that circPTK2 may serve as a novel therapeutic target for gastric cancer.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 770 ◽  
Author(s):  
Xiao Yuan ◽  
Ya Yuan ◽  
Zhi He ◽  
Diyan Li ◽  
Bo Zeng ◽  
...  

Circular ribonucleic acids (circRNAs), which are a type of covalently closed circular RNA, are receiving increasing attention. An increasing amount of evidence suggests that circRNAs are involved in the biogenesis and development of multiple diseases such as digestive system cancers. Dysregulated circRNAs have been found to act as oncogenes or tumour suppressors in digestive system cancers. Moreover, circRNAs are related to ageing and a wide variety of processes in tumour cells, such as cell apoptosis, invasion, migration, and proliferation. Moreover, circRNAs can perform a remarkable multitude of biological functions, such as regulating splicing or transcription, binding RNA-binding proteins to enable function, acting as microRNA (miRNA) sponges, and undergoing translated into proteins. However, in digestive system cancers, circRNAs function mainly as miRNA sponges. Herein, we summarise the latest research progress on biological functions of circRNAs in digestive system cancers. This review serves as a synopsis of potential therapeutic targets and biological markers for digestive system cancer.


2019 ◽  
Vol 52 (1) ◽  
pp. 177-192 ◽  
Author(s):  
Lies Declercq ◽  
Wilfried Cools ◽  
S. Natasha Beretvas ◽  
Mariola Moeyaert ◽  
John M. Ferron ◽  
...  

2016 ◽  
Vol 39 (4) ◽  
pp. 1380-1390 ◽  
Author(s):  
Yating Qian ◽  
Yuanqing Lu ◽  
Can Rui ◽  
Yujia Qian ◽  
Manhong Cai ◽  
...  

Aims: This study aimed to identify the different expression of circular RNAs (circRNAs) in the placental tissues of pregnant women with preeclampsia (PE) and to provide a new avenue of research regarding the pathological mechanisms of PE. Methods: In this study, we collected 40 placental tissues from PE patients and 35 placental tissues from gestational age-matched patients who gave premature birth. Arraystar circRNA Microarray Technology (KANGCHEN, Shanghai, China) was used to analyze the differential expression of circRNAs. According to the basic content of circRNAs in the two groups and their fold changes and due to the practicability of the designed divergent primers of each candidate circRNA, we selected three up-regulated circRNAs, hsa_circRNA_100782, hsa_circRNA_102682 and hsa_circRNA_104820, to validate the data. Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was utilized to estimate the Ct values in both groups. We further evaluated the differences with a paired t-test and a receiver operating characteristic (ROC) curve. Results: Many circRNAs were found to be differentially expressed in PE placental tissues versus their controls; of these, 143 circRNAs were up-regulated and 158 were down-regulated. The expression levels of hsa_circRNA_100782 (p < 0.05), hsa_circRNA_102682 (p < 0.05), and hsa_circRNA_104820 (p < 0.0001) were validated as significantly up-regulated in the experimental group compared with the controls. Finally, we performed a literature comparison to forecast the possible mechanisms of circRNA function during PE. Conclusion: circRNA expression significantly differed in placental PE tissues compared with controls. According to the circRNA microarray results and the existing papers, circRNAs may contribute to the pathogenesis of PE by acting as miRNA sponges; this possibility requires additional investigation in future studies.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ximin Fan ◽  
Xinyu Weng ◽  
Yifan Zhao ◽  
Wei Chen ◽  
Tianyi Gan ◽  
...  

Circular RNA (circRNA), a novel type of endogenous noncoding RNA (ncRNA), has become a research hotspot in recent years. CircRNAs are abundant and stably exist in creatures, and they are found with covalently closed loop structures in which they are quite different from linear RNAs. Nowadays, an increasing number of scientists have demonstrated that circRNAs may have played an essential role in the regulation of gene expression, especially acting as miRNA sponges, and have described the potential mechanisms of several circRNAs in diseases, hinting at their clinical therapeutic values. In this review, the authors summarized the current understandings of the biogenesis and properties of circRNAs and their functions and role as biomarkers in cardiovascular diseases.


2020 ◽  
Vol 20 (1) ◽  
pp. 3-10
Author(s):  
Patricia Adu-Asiamah ◽  
Qiying Leng ◽  
Haidong Xu ◽  
Jiahui Zheng ◽  
Zhihui Zhao ◽  
...  

AbstractCircular RNAs (circRNAs) have been identified in the skeletal muscle of numerous species of animals. Their abundance, diversity, and their dynamic expression patterns have been revealed in various developmental stages and physiological conditions in skeletal muscles. Recently, studies have made known that circRNAs widely participate in muscle cell proliferation and differentiation. They are also involved in other life processes such as functioning as microRNA (miRNA) sponges, regulators of splicing and transcription, and modifiers of parental gene expression with emerging pieces of evidence indicating a high chance of playing a vital role in several cells and tissues, especially the muscles. Other research has emphatically stated that the growth and development of skeletal muscle are regulated by proteins as well as non-coding RNAs, which involve circRNAs. Therefore, circRNAs have been considered significant biological regulators for understanding the molecular mechanisms of myoblasts. Here, we discuss how circRNAs are abundantly expressed in muscle (myoblast) and their critical roles in growth and development.


Sign in / Sign up

Export Citation Format

Share Document