scholarly journals Identification of Key Metabolic Pathways and Biomarkers Underlying Flowering Time of Guar (Cyamopsis tetragonoloba (L.) Taub.) via Integrated Transcriptome-Metabolome Analysis

Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 952
Author(s):  
Elizaveta Grigoreva ◽  
Alexander Tkachenko ◽  
Serafima Arkhimandritova ◽  
Aleksandar Beatovic ◽  
Pavel Ulianich ◽  
...  

Guar (Cyamopsis tetragonoloba (L.) Taub.) is an annual legume crop native to India and Pakistan. Seeds of the plant serve as a source of galactomannan polysaccharide (guar gum) used in the food industry as a stabilizer (E412) and as a gelling agent in oil and gas fracturing fluids. There were several attempts to introduce this crop to countries of more northern latitudes. However, guar is a plant of a short photoperiod, therefore, its introduction, for example, to Russia is complicated by a long day length during the growing season. Breeding of new guar varieties insensitive to photoperiod slowed down due to the lack of information on functional molecular markers, which, in turn, requires information on guar genome. Modern breeding strategies, e.g., genomic predictions, benefit from integration of multi-omics approaches such as transcriptome, proteome and metabolome assays. Here we present an attempt to use transcriptome-metabolome integration to understand the genetic determination of flowering time variation among guar plants that differ in their photoperiod sensitivity. This study was performed on nine early- and six delayed-flowering guar varieties with the goal to find a connection between 63 metabolites and 1,067 differentially expressed transcripts using Shiny GAM approach. For the key biomarker of flowering in guar myo-inositol we also evaluated the KEGG biochemical pathway maps available for Arabidopsis thaliana. We found that the phosphatidylinositol signaling pathway is initiated in guar plants that are ready for flowering through the activation of the phospholipase C (PLC) gene, resulting in an exponential increase in the amount of myo-inositol in its free form observed on GC-MS chromatograms. The signaling pathway is performed by suppression of myo-inositol phosphate kinases (phosphorylation) and alternative overexpression of phosphatases (dephosphorylation). Our study suggests that metabolome and transcriptome information taken together, provide valuable information about biomarkers that can be used as a tool for marker-assisted breeding, metabolomics and functional genomics of this important legume crop.

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2063
Author(s):  
Elizaveta Grigoreva ◽  
Yury Barbitoff ◽  
Anton Changalidi ◽  
Dmitry Karzhaev ◽  
Vladimir Volkov ◽  
...  

Guar gum, a polysaccharide derived from guar seeds, is widely used in a variety of industrial applications, including oil and gas production. Although guar is mostly propagated in India, interest in guar as a new industrial legume crop is increasing worldwide, demanding the development of effective tools for marker-assisted selection. In this paper, we report a wide-ranging set of 4907 common SNPs and 327 InDels generated from RADseq genotyping data of 166 guar plants of different geographical origin. A custom guar reference genome was assembled and used for variant calling. A consensus set of variants was built using three bioinformatic pipelines for short variant discovery. The developed molecular markers were used for genome-wide association study, resulting in the discovery of six markers linked to the variation of an important agronomic trait—percentage of pods matured to the harvest date under long light day conditions. One of the associated variants was found inside the putative transcript sequence homologous to an ABC transporter in Arabidopsis, which has been shown to play an important role in D-myo-inositol phosphates metabolism. Earlier, we suggested that genes involved in myo-inositol phosphate metabolism have significant impact on the early flowering of guar plants. Hence, we believe that the developed SNP set allows for the identification of confident molecular markers of important agrobiological traits.


2019 ◽  
Vol 23 (7) ◽  
pp. 941-948
Author(s):  
I. V. Kruchina-Bogdanov ◽  
E. V. Miroshnichenko ◽  
R. A. Shaukharov ◽  
E. N. Kantemirova ◽  
M. A. Golovina ◽  
...  

Galactomannan (gum), a water-soluble polysaccharide, is widely used as a gelling agent in liquids, including in the oil and gas industry for hydraulic fracturing. The most effective source of this valuable plant material is seeds of guar (Cyamopsis tetragonoloba (L.) Taub.), a legume crop new for Russia. Although in recent years progress has been made in the selection of guar varieties adapted to the conditions of the Russian Federation, the question of the most appropriate region for the cultivation of this crop remains open. The purpose of the study was to investigate how a region and technology of guar cultivation can affect the main indicators of the final target product: the content and viscosity of guar gum extracted from the seeds of various guar genotypes. To understand this, ecogeographical tests of 13 guar accessions from the VIR collection were conducted at the experimental stations of the Vavilov Institute (VIR), where climatic conditions correspond to the temperature requirements of the crop. To compare the properties of gum extracted from the seeds of various genotypes, a fast-tracked laboratory method was suggested allowing gum extracts to be obtained for assessing their viscosity. The method allows fast screening of the breeding material and selecting guar genotypes with beneficial properties of guar gum which are in demand by the oil industry. Applying the fast laboratory method for assessing the properties of gum in seeds of 13 guar varieties showed that the content and viscosity of gum of the same variety vary greatly depending on growing conditions. The same set of 13 guar accessions was grown in 2018 at the Volgograd, Astrakhan, Dagestan and Kuban VIR experimental stations. As a result, the maximum viscosity values were obtained for the seeds reproduced at the Astrakhan region, where the guar was grown on irrigated lands. On the other hand, the maximum gum content in the seeds of all accessions was recorded when they were grown in the Volgograd region. The results showed that the guar gum extracted from seeds of guar plants grown in the Russian Federation can be used as a gelling agent in the processes of intensification of oil production by the method of hydraulic fracturing. This experience is new to the Russian Federation.


Cluster Bean (Cyamopsis tetragonoloba L. Taub) commonly known as is a drought and high temperature tolerant Cyamopsis tetragonoloba Guar, deep-rooted summer annual legume crop cultivated mainly in the Kharif season in an arid region and used as animal feed, fodder, green manure and extraction of gum for industrial uses. India is the largest producer of cluster bean and contributes 80 percent of total cluster bean production in the world. Rajasthan is the single largest producer and alone contributed to more than 70 percent of India’s total output. The increased demand for guar gum resulted in a strong escalation of the prices of cluster bean. Looking at the agricultural and industrial importance of this marginalized crop in Rajasthan, particularly realizing the potential in Bikaner district of the state, the present study attempted to analyze the present scenario of the production of cluster bean crops in Bikaner district of the state. A return per rupee invested in cluster bean crop was higher in the small farm (1:1.38) and marginally lowers on the medium farm (1:1.35). Break-even guar production ranged between 4.26 to 5.19 q per ha in small farm, 4.16 to 4.99 q per ha in medium and 3.98 to 4.94 q per ha on a large farm.


2020 ◽  
Vol 20 (S1) ◽  
Author(s):  
Serafima Arkhimandritova ◽  
Alexey Shavarda ◽  
Elena Potokina

Abstract Background Guar (Cyamopsis tetragonoloba (L.) Taub.), a short-day plant, is an economically valuable legume crop. Seeds of guar serve as a source of galactomannan polysaccharide, known as guar gum, which is in demand in the gas and oil industries. The rapid and complete maturation of guar seeds depends on the flowering time of a particular genotype. It is known that flowering in guar is controlled by several gene systems. However, no information about the process and mechanisms that trigger flowering in guar on the molecular and biochemical levels was previously reported. The aim of the study was to investigate the metabolic landscape underlying transition to the flowering in guar using GC-MS-metabolomic analysis. Results 82 diverse guar genotypes (each in 8 replicates) from the VIR collection were grown under experimental conditions of high humidity and long photoperiod. In the stress environment some guar genotypes turned to flowering early (41 ± 1,8 days from the first true leaf appearance) while for others the serious delay of flowering (up to 95 ± 1,7 days) was observed. A total of 244 metabolites were detected by GC-MS analysis on the third true leaves stage of 82 guar genotypes. Among them some molecules were associated with the transition of the guar plants to flowering. Clear discrimination was observed in metabolomic profiles of two groups of «early flowering» and «delayed flowering» plants, with 65 metabolites having a significantly higher abundance in early flowering genotypes. Among them 7 key molecules were identified by S-plot, as potential biomarkers discriminating of «early flowering» and «delayed flowering» guar genotypes. Conclusions The metabolomic landscape accompanying transition to flowering in guar was firstly described. The results obtained can be used in subsequent genomic research for identifying metabolite-gene associations and revealing genes responsible for the onset of flowering and photoperiod sensitivity of guar. In addition, the detected key metabolites associated with flowering of guar can be employed as biomarkers allowing rapid screening of breeding material for the potentially early flowering genotypes.


Author(s):  
Priyanka Gupta ◽  
Hafssa Kabbaj ◽  
Khaoula El Hassouni ◽  
Marco Maccaferri ◽  
Miguel Sabchez-Garcia ◽  
...  

Flowering time is a critical stage for crop development as it regulates the ability of plants to adapt to an environment. To understand the genetic control of flowering time, a genome wide association study (GWAS) was conducted to identify the genomic regions associated with the control of this trait in durum wheat (Triticum durum Desf.). A total of 96 landraces and 288 modern lines were evaluated for days to heading, growing degree days, and accumulated day length at flowering across 13 environments spread across Morocco, Lebanon, Mauritania, and Senegal. These environments were grouped into four pheno-environments based on temperatures, day length and other climatic variables. Genotyping with 35K Axiom array generated 7,652 polymorphic SNPs in addition to 3 KASP markers associated to known flowering genes. In total, 34 significant QTLs were identified in both landraces and modern lines. Some QTLs had strong association with already known regulatory photoperiod genes, Ppd-A and Ppd-B and vernalization genes Vrn-A1, and Vrn3. However, these loci explained only 5 to 20% of variance for days to heading. Seven QTLs overlapped between the two germplasm groups in which Q.ICD.Eps-03 and Q.ICD.Vrn-17 consistently affected flowering time in all the pheno-environments, while Q.ICD.Eps-11 and Q.ICD.Ppd-12 were significant only in two pheno-environments and the combined analysis across all environments. These results help clarify the genetic mechanism controlling flowering time in durum wheat and show some clear distinctions to what is known for common wheat (Triticum aestivum L.)


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0240390
Author(s):  
Hongxu Dong ◽  
Lindsay V. Clark ◽  
Xiaoli Jin ◽  
Kossonou Anzoua ◽  
Larisa Bagmet ◽  
...  

Miscanthus is a close relative of Saccharum and a potentially valuable genetic resource for improving sugarcane. Differences in flowering time within and between Miscanthus and Saccharum hinders intra- and interspecific hybridizations. A series of greenhouse experiments were conducted over three years to determine how to synchronize flowering time of Saccharum and Miscanthus genotypes. We found that day length was an important factor influencing when Miscanthus and Saccharum flowered. Sugarcane could be induced to flower in a central Illinois greenhouse using supplemental lighting to reduce the rate at which days shortened during the autumn and winter to 1 min d-1, which allowed us to synchronize the flowering of some sugarcane genotypes with Miscanthus genotypes primarily from low latitudes. In a complementary growth chamber experiment, we evaluated 33 Miscanthus genotypes, including 28 M. sinensis, 2 M. floridulus, and 3 M. ×giganteus collected from 20.9° S to 44.9° N for response to three day lengths (10 h, 12.5 h, and 15 h). High latitude-adapted M. sinensis flowered mainly under 15 h days, but unexpectedly, short days resulted in short, stocky plants that did not flower; in some cases, flag leaves developed under short days but heading did not occur. In contrast, for M. sinensis and M. floridulus from low latitudes, shorter day lengths typically resulted in earlier flowering, and for some low latitude genotypes, 15 h days resulted in no flowering. However, the highest ratio of reproductive shoots to total number of culms was typically observed for 12.5 h or 15 h days. Latitude of origin was significantly associated with culm length, and the shorter the days, the stronger the relationship. Nearly all entries achieved maximal culm length under the 15 h treatment, but the nearer to the equator an accession originated, the less of a difference in culm length between the short-day treatments and the 15 h day treatment. Under short days, short culms for high-latitude accessions was achieved by different physiological mechanisms for M. sinensis genetic groups from the mainland in comparison to those from Japan; for mainland accessions, the mechanism was reduced internode length, whereas for Japanese accessions the phyllochron under short days was greater than under long days. Thus, for M. sinensis, short days typically hastened floral induction, consistent with the expectations for a facultative short-day plant. However, for high latitude accessions of M. sinensis, days less than 12.5 h also signaled that plants should prepare for winter by producing many short culms with limited elongation and development; moreover, this response was also epistatic to flowering. Thus, to flower M. sinensis that originates from high latitudes synchronously with sugarcane, the former needs day lengths >12.5 h (perhaps as high as 15 h), whereas that the latter needs day lengths <12.5 h.


2018 ◽  
Author(s):  
Mathias Wiegmann ◽  
Andreas Maurer ◽  
Anh Pham ◽  
Timothy J. March ◽  
Ayed Al-Abdallat ◽  
...  

AbstractSince the dawn of agriculture, crop yield has always been impaired through abiotic stresses. In a field trial across five locations worldwide, we tested three abiotic stresses, nitrogen deficiency, drought and salinity, using HEB-YIELD, a selected subset of the wild barley nested association mapping population HEB-25. We show that barley flowering time genes Ppd-H1, Sdw1, Vrn-H1 and Vrn-H3 exert pleiotropic effects on plant development and grain yield. Under field conditions, these effects are strongly influenced by environmental cues like day length and temperature. For example, in Al-Karak, Jordan, the day length-sensitive wild barley allele of Ppd-H1 was associated with an increase of grain yield by up to 30% compared to the insensitive elite barley allele. The observed yield increase is accompanied by pleiotropic effects of Ppd-H1 resulting in shorter life cycle, extended grain filling period and increased grain size. Our study indicates that the adequate timing of plant development is crucial to maximize yield formation under harsh environmental conditions. We provide evidence that wild barley germplasm, introgressed into elite barley cultivars, can be utilized to improve grain yield. The presented knowledge may be transferred to related crop species like wheat and rice securing the rising global food demand for cereals.


2021 ◽  
Vol 37 (4) ◽  
pp. 96-105
Author(s):  
E.Yu. Kozhevnikova ◽  
A.V. Shnyreva ◽  
A.V. Barkov ◽  
Yu.A. Topolyuk ◽  
I.N. Grishina ◽  
...  

Guar gum is a polymer that is widely used as a gelling agent for technological liquids in the petroleum industry. In this paper, we have studied the potential for the environmentally friendly biodegradation of guar gum by enzymes of basidiomycetes for efficient disposal of oil industry wastes. For the first time, we compared the enzymatic activity towards guar gum of seven basidiomycete strains, namely Trametes hirsuta MT-24.24, Lactarius necator, Trametes hirsuta MT-17.24, Schizophyllum commune MT-33.01, Fomes fomentarius MT-4.05, Fomitopsis pinicola MT-5.21, and Trametes versicolor It-1. This comparison showed that the preparation based on Fomitopsis pinicola MT-5.21 fungal mycelium at a concentration of 0.05% provides the most efficient decomposition of a frac fluid containing guar gum. By varying the enzyme concentration in this fluid it is possible to control the decrease in its viscosity over time. The developed enzyme preparation is an efficient and environmentally friendly guar gum biodegradant and can be used to process waste fracturing fluids based on polysaccharides in order to reuse water resources. Key words: biodegradants, basidiomycetes, guar gum, enzymatic hydrolysis, enzyme destructors, fracturing fluids. Funding - The work was financially supported by the National University of Oil and Gas "Gubkin University" (Internal grant no. 120720 "Development of New Biotechnological Methods and Materials for Environmental Protection and Biomedicine").


Sign in / Sign up

Export Citation Format

Share Document