scholarly journals Comprehensive Analysis of Jumonji Domain C Family from Citrus grandis and Expression Profilings in the Exocarps of “Huajuhong” (Citrus grandis “Tomentosa”) during Various Development Stages

Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 592
Author(s):  
Yuzhen Tian ◽  
Ruiyi Fan ◽  
Jiwu Zeng

Citrus grandis “Tomentosa” (“Huajuhong”) is a famous Traditional Chinese Medicine. In this study, a total of 18 jumonji C (JMJC) domain-containing proteins were identified from C. grandis. The 18 CgJMJCs were unevenly located on six chromosomes of C. grandis. Phylogenetic analysis revealed that they could be classified into five groups, namely KDM3, KDM4, KDM5, JMJC, and JMJD6. The domain structures and motif architectures in the five groups were diversified. Cis-acting elements on the promoters of 18 CgJMJC genes were also investigated, and the abscisic acid-responsive element (ABRE) was distributed on 15 CgJMJC genes. Furthermore, the expression profiles of 18 CgJMJCs members in the exocarps of three varieties of “Huajuhong”, for different developmental stages, were examined. The results were validated by quantitative real-time PCR (qRT-PCR). The present study provides a comprehensive characterization of JMJC domain-containing proteins in C. grandis and their expression patterns in the exocarps of C. grandis “Tomentosa” for three varieties with various development stages.

2021 ◽  
Vol 49 (1) ◽  
pp. 12191
Author(s):  
Wei ZHENG ◽  
Ziwei ZHANG ◽  
Xuefei YU ◽  
Tongtong XIE ◽  
Ning CHEN ◽  
...  

The WD40 transcription factor (TF) family is widespread in plants and plays important roles in plant growth and development, transcriptional regulation, and tolerance to abiotic stresses. WD40 TFs have been identified and characterized in a diverse series of plant species. However, little information is available on WD40 genes from D. longan. In this study, a total of 45 DlWD40 genes were identified from D. longan RNA-Seq data, and further analysed by bioinformatics tools. Also, the expression patterns of DlWD40 genes in roots and leaves, as well as responses to heat stress, were evaluated using quantitative real-time PCR (qRT-PCR). We found that the 45 DlWD40 proteins, together with 80 WD40 proteins from Arabidopsis and Zea mays, could be categorized into six groups. Of these, the DlWD40-4 protein was highly homologous to Arabidopsis WDR5a, a protein participating in tolerance to abiotic stresses. Moreover, a total of 25 cis-acting elements, such as abiotic stress and flavonoid biosynthesis elements, were found in the promoters of DlWD40 genes. The DlWD40-33 gene is targeted by miR3627, which has been proposed to be involved in flavonoid biosynthesis. Using qRT-PCR, ten of the 45 DlWD40 genes were demonstrated to have diverse expression patterns between roots and leaves, and these ten DlWD40 genes could also respond to varying durations of a 38 °C heat stress in roots and leaves. The results reported here will provide a basis for the further functional verification of DlWD40 genes in D. longan.


2021 ◽  
Vol 22 (9) ◽  
pp. 4634
Author(s):  
Wenxuan Du ◽  
Junfeng Yang ◽  
Lin Ma ◽  
Qian Su ◽  
Yongzhen Pang

The calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK) play important roles in plant signal transduction and response to abiotic stress. Plants of Medicago genus contain many important forages, and their growth is often affected by a variety of abiotic stresses. However, studies on the CBL and CIPK family member and their function are rare in Medicago. In this study, a total of 23 CBL and 58 CIPK genes were identified from the genome of Medicago sativa as an important forage crop, and Medicaog truncatula as the model plant. Phylogenetic analysis suggested that these CBL and CIPK genes could be classified into five and seven groups, respectively. Moreover, these genes/proteins showed diverse exon-intron organizations, architectures of conserved protein motifs. Many stress-related cis-acting elements were found in their promoter region. In addition, transcriptional analyses showed that these CBL and CIPK genes exhibited distinct expression patterns in various tissues, and in response to drought, salt, and abscisic acid treatments. In particular, the expression levels of MtCIPK2 (MsCIPK3), MtCIPK17 (MsCIPK11), and MtCIPK18 (MsCIPK12) were significantly increased under PEG, NaCl, and ABA treatments. Collectively, our study suggested that CBL and CIPK genes play crucial roles in response to various abiotic stresses in Medicago.


2019 ◽  
Vol 20 (13) ◽  
pp. 3235 ◽  
Author(s):  
Yanguo Ke ◽  
Farhat Abbas ◽  
Yiwei Zhou ◽  
Rangcai Yu ◽  
Yuechong Yue ◽  
...  

Auxin plays a key role in different plant growth and development processes, including flower opening and development. The perception and signaling of auxin depend on the cooperative action of various components, among which auxin/indole-3-acetic acid (Aux/IAA) proteins play an imperative role. In a recent study, the entire Aux/IAA gene family was identified and comprehensively analyzed in Hedychium coronarium, a scented species used as an ornamental plant for cut flowers. Phylogenetic analysis showed that the Aux/IAA gene family in H. coronarium is slightly contracted compared to Arabidopsis, with low levels of non-canonical proteins. Sequence analysis of promoters showed numerous cis-regulatory elements related to various phytohormones. HcIAA genes showed distinct expression patterns in different tissues and flower developmental stages, and some HcIAA genes showed significant responses to auxin and ethylene, indicating that Aux/IAAs may play an important role in linking hormone signaling pathways. Based on the expression profiles, HcIAA2, HcIAA4, HcIAA6 and HcIAA12, were selected as candidate genes and HcIAA2 and HcIAA4 were screened for further characterization. Downregulation of HcIAA2 and HcIAA4 by virus-induced gene silencing in H. coronarium flowers modified the total volatile compound content, suggesting that HcIAA2 and HcIAA4 play important roles in H. coronarium floral scent formation. The results presented here will provide insights into the putative roles of HcIAA genes and will assist the elucidation of their precise roles during floral scent formation.


2019 ◽  
Vol 144 (2) ◽  
pp. 79-91 ◽  
Author(s):  
Zhigang Ouyang ◽  
Huihui Duan ◽  
Lanfang Mi ◽  
Wei Hu ◽  
Jianmei Chen ◽  
...  

In eukaryotic systems, messenger RNA regulations, including splicing, 3′-end formation, editing, localization, and translation, are achieved by different RNA-binding proteins and noncoding RNAs. The YTH domain is a newly identified RNA-binding domain that was identified by comparing its sequence with that of splicing factor YT521-B. Previous study showed that the YTH gene plays an important role in plant resistance to abiotic and biotic stress. In this study, 211 YTH genes were identified in 26 species that represent four major plant lineages. Phylogenetic analysis revealed that these genes could be divided into eight subgroups. All of the YTH genes contain a YT521 domain and have different structures. Ten YTH genes were identified in navel orange (Citrus sinensis). The expression profiles of these CitYTH genes were analyzed in different tissues and at different fruit developmental stages, and CitYTH genes displayed distinct expression patterns under heat, cold, salt, and drought stress. Furthermore, expression of the CitYTH genes in response to exogenous hormones was measured. Nuclear localization was also confirmed for five of the proteins encoded by these genes after transient expression in Nicotiana benthamiana cells. This study provides valuable information on the role of CitYTHs in the signaling pathways involved in environmental stress responses in Citrus.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Huiping Zhu ◽  
Yangdong Wang ◽  
Hengfu Yin ◽  
Ming Gao ◽  
Qiyan Zhang ◽  
...  

Leucine-rich repeat receptor-like kinases (LRR-RLKs) make up the largest group of RLKs in plants and play important roles in many key biological processes such as pathogen response and signal transduction. To date, most studies on LRR-RLKs have been conducted on model plants. Here, we identified 236 and 230LRR-RLKsin two industrial oil-producing trees:Vernicia fordiiandVernicia montana, respectively. Sequence alignment analyses showed that the homology of the RLK domain (23.81%) was greater than that of the LRR domain (9.51%) among theVf/VmLRR-RLKs. The conserved motif of the LRR domain inVf/VmLRR-RLKsmatched well the known plant LRR consensus sequence but differed at the third last amino acid (W or L). Phylogenetic analysis revealed thatVf/VmLRR-RLKswere grouped into 16 subclades. We characterized the expression profiles ofVf/VmLRR-RLKsin various tissue types including root, leaf, petal, and kernel. Further investigation revealed thatVf/VmLRR-RLKorthologous genes mainly showed similar expression patterns in response to tree wilt disease, except 4 pairs ofVf/VmLRR-RLKsthat showed opposite expression trends. These results represent an extensive evaluation ofLRR-RLKsin two industrial oil trees and will be useful for further functional studies on these proteins.


2019 ◽  
Vol 10 (2) ◽  
pp. 443-454
Author(s):  
Chang Liu ◽  
Cornelius Tlotliso Sello ◽  
Yujian Sui ◽  
Jingtao Hu ◽  
Shaokang Chen ◽  
...  

In order to enrich the Anser cygnoides genome and identify the gene expression profiles of primary and secondary feather follicles development, de novo transcriptome assembly of skin tissues was established by analyzing three developmental stages at embryonic day 14, 18, and 28 (E14, E18, E28). Sequencing output generated 436,730,608 clean reads from nine libraries and de novo assembled into 56,301 unigenes. There were 2,298, 9,423 and 12,559 unigenes showing differential expression in three stages respectively. Furthermore, differentially expressed genes (DEGs) were functionally classified according to genes ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and series-cluster analysis. Relevant specific GO terms such as epithelium development, regulation of keratinocyte proliferation, morphogenesis of an epithelium were identified. In all, 15,144 DEGs were clustered into eight profiles with distinct expression patterns and 2,424 DEGs were assigned to 198 KEGG pathways. Skin development related pathways (mitogen-activated protein kinase signaling pathway, extra-cellular matrix -receptor interaction, Wingless-type signaling pathway) and genes (delta like canonical Notch ligand 1, fibroblast growth factor 2, Snail family transcriptional repressor 2, bone morphogenetic protein 6, polo like kinase 1) were identified, and eight DEGs were selected to verify the reliability of transcriptome results by real-time quantitative PCR. The findings of this study will provide the key insights into the complicated molecular mechanism and breeding techniques underlying the developmental characteristics of skin and feather follicles in Anser cygnoides.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Weizhuo Zhu ◽  
Yiyi Guo ◽  
Yeke Chen ◽  
Dezhi Wu ◽  
Lixi Jiang

Abstract Background Transcription factors GATAs are involved in plant developmental processes and respond to environmental stresses through binding DNA regulatory regions to regulate their downstream genes. However, little information on the GATA genes in Brassica napus is available. The release of the reference genome of B. napus provides a good opportunity to perform a genome-wide characterization of GATA family genes in rapeseed. Results In this study, 96 GATA genes randomly distributing on 19 chromosomes were identified in B. napus, which were classified into four subfamilies based on phylogenetic analysis and their domain structures. The amino acids of BnGATAs were obvious divergence among four subfamilies in terms of their GATA domains, structures and motif compositions. Gene duplication and synteny between the genomes of B. napus and A. thaliana were also analyzed to provide insights into evolutionary characteristics. Moreover, BnGATAs showed different expression patterns in various tissues and under diverse abiotic stresses. Single nucleotide polymorphisms (SNPs) distributions of BnGATAs in a core collection germplasm are probably associated with functional disparity under environmental stress condition in different genotypes of B. napus. Conclusion The present study was investigated genomic structures, evolution features, expression patterns and SNP distributions of 96 BnGATAs. The results enrich our understanding of the GATA genes in rapeseed.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lian Chee Foong ◽  
Jian Yi Chai ◽  
Anthony Siong Hock Ho ◽  
Brandon Pei Hui Yeo ◽  
Yang Mooi Lim ◽  
...  

Abstract Impatiens balsamina L. is a tropical ornamental and traditional medicinal herb rich in natural compounds, especially 2-methoxy-1,4-naphthoquinone (MNQ) which is a bioactive compound with tested anticancer activities. Characterization of key genes involved in the shikimate and 1,4-dihydroxy-2-naphthoate (DHNA) pathways responsible for MNQ biosynthesis and their expression profiles in I. balsamina will facilitate adoption of genetic/metabolic engineering or synthetic biology approaches to further increase production for pre-commercialization. In this study, HPLC analysis showed that MNQ was present in significantly higher quantities in the capsule pericarps throughout three developmental stages (early-, mature- and postbreaker stages) whilst its immediate precursor, 2-hydroxy-1,4-naphthoquinone (lawsone) was mainly detected in mature leaves. Transcriptomes of I. balsamina derived from leaf, flower, and three capsule developmental stages were generated, totalling 59.643 Gb of raw reads that were assembled into 94,659 unigenes (595,828 transcripts). A total of 73.96% of unigenes were functionally annotated against seven public databases and 50,786 differentially expressed genes (DEGs) were identified. Expression profiles of 20 selected genes from four major secondary metabolism pathways were studied and validated using qRT-PCR method. Majority of the DHNA pathway genes were found to be significantly upregulated in early stage capsule compared to flower and leaf, suggesting tissue-specific synthesis of MNQ. Correlation analysis identified 11 candidate unigenes related to three enzymes (NADH-quinone oxidoreductase, UDP-glycosyltransferases and S-adenosylmethionine-dependent O-methyltransferase) important in the final steps of MNQ biosynthesis based on genes expression profiles consistent with MNQ content. This study provides the first molecular insight into the dynamics of MNQ biosynthesis and accumulation across different tissues of I. balsamina and serves as a valuable resource to facilitate further manipulation to increase production of MNQ.


2008 ◽  
Vol 74 (21) ◽  
pp. 6709-6719 ◽  
Author(s):  
Annette R. Rowe ◽  
Brendan J. Lazar ◽  
Robert M. Morris ◽  
Ruth E. Richardson

ABSTRACT This study sought to characterize bacterial and archaeal populations in a perchloroethene- and butyrate-fed enrichment culture containing hydrogen-consuming “Dehalococcoides ethenogenes” strain 195 and a Methanospirillum hungatei strain. Phylogenetic characterization of this microbial community was done via 16S rRNA gene clone library and gradient gel electrophoresis analyses. Fluorescence in situ hybridization was used to quantify populations of “Dehalococcoides” and Archaea and to examine the colocalization of these two groups within culture bioflocs. A technique for enrichment of planktonic and biofloc-associated biomass was developed and used to assess differences in population distribution and gene expression patterns following provision of substrate. On a per-milliliter-of-culture basis, most D. ethenogenes genes (the hydrogenase gene hupL; the highly expressed gene for an oxidoreductase of unknown function, fdhA; the RNA polymerase subunit gene rpoB; and the 16S rRNA gene) showed no statistical difference in expression between planktonic and biofloc enrichments at either time point studied (1 to 2 and 6 h postfeeding). Normalization of transcripts to ribosome (16S rRNA) levels supported that planktonic and biofloc-associated D. ethenogenes had similar gene expression profiles, with one notable exception; planktonic D. ethenogenes showed higher expression of tceA relative to biofloc-associated cells at 6 h postfeeding. These trends were compared to those for the hydrogen-consuming methanogen in the culture, M. hungatei. The vast majority of M. hungatei cells, ribosomes (16S rRNA), and transcripts of the hydrogenase gene mvrD and the housekeeping gene rpoE were observed in the biofloc enrichments. This suggests that, unlike the comparable activity of D. ethenogenes from both enrichments, planktonic M. hungatei is responsible for only a small fraction of the hydrogenotrophic methanogenesis in this culture.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 4518-4518
Author(s):  
Syed A. Hussain ◽  
Daniel H. Palmer ◽  
Wing Kin Syn ◽  
Joseph J Sacco ◽  
Bryony Lloyd ◽  
...  

4518 Background: Characterization of gene expression patterns in bladder cancer (BC) allows the identification of pathways involved in its pathogenesis, and may stimulate the development of novel therapies targeting these pathways. Methods: Between 2004 and 2005, cystoscopic bladder biopsies were obtained from 19 patients and 11 controls. These were subjected to whole transcript-based microarray analysis. Unsupervised hierarchical clustering was used to identify samples with similar expression profiles. Results: Hierarchical clustering defined signatures, which differentiated between cancer and normal, muscle-invasive or non-muscle invasive cancer and normal, g1 and g3. Pathways associated with cell cycle and proliferations were markedly upregulated in muscle-invasive and grade 3 cancers. Genes associated with the classical complement pathway were downregulated in non-muscle invasive cancer. Osteopontin was markedly overexpressed in invasive cancer as compared to normal tissue. Conclusions: This study contributes to a growing body of work on gene expression signatures in BC. The data support an important role for osteopontin in BC, and identify several pathways worthy of further investigation. [Table: see text]


Sign in / Sign up

Export Citation Format

Share Document