scholarly journals Hydrogeochemical Characterization and Irrigation Quality Assessment of Shallow Groundwater in the Central-Western Guanzhong Basin, China

Author(s):  
Panpan Xu ◽  
Wenwen Feng ◽  
Hui Qian ◽  
Qiying Zhang

Groundwater is the major water resource for the agricultural development of the Guanzhong Basin, China. In this study, a total of 97 groundwater samples (51 from the North Bank of the Wei River (NBWR) and 46 from the South Bank of the Wei River (SBWR)) were collected from the central-western Guanzhong Basin. The aim of this study was to investigate the hydrogeochemical characteristics of the basin and to determine the suitability of shallow groundwater for irrigation. The groundwater of the entire study area is alkaline. The groundwater of the SBWR is fresh water, and the NBWR groundwater is either freshwater or brackish water. The average concentration of ions (except for Ca2+) in SBWR samples is lower than in NBWR samples. HCO3− is dominant in the groundwater of the study area. Ca2+ is dominant in the SBWR while Na+ is dominant in the NBWR. The SBWR groundwater is mainly of the HCO3-Ca·Mg type, and has undergone the main hydrogeochemical processes of rock weathering-leaching. The hydrochemical facies of the majority of the NBWR groundwater samples are the HCO3-Na type with several minor hydrochemical facies of the HCO3-Ca·Mg, SO4·Cl-Na, and SO4·Cl-Ca·Mg types. Its chemistry is mainly controlled by rock weathering, cation exchange, and evaporation. Salinity hazard, sodium percentage, sodium adsorption ratio, residual sodium carbonate, magnesium hazard, permeability index, Kelley’s ratio, potential salinity, synthetic harmful coefficient, and irrigation coefficient were assessed to evaluate the irrigation quality of groundwater. The results of the comprehensive consideration of these indicators indicate that the percentage of NBWR water samples suitable for irrigation purposes ranges between 15.7% and 100% at an average level of 56.7%. Of the SBWR water samples suitable for irrigation, the percentage ranges from 78.3% to 100% with an average of 91.8%. Land irrigated with such water will not be exposed to any alkali hazard, but will suffer from a salinity hazard, which is more severe in the NBWR. Thus, most of the water in the NBWR can be used for soils with good drainage conditions which control salinity.

2020 ◽  
Vol 12 (8) ◽  
pp. 3106
Author(s):  
Abdulaziz G. Alghamdi ◽  
Anwar A. Aly ◽  
Sami Ali Aldhumri ◽  
Fahad N. Al-Barakaha

Fifty-four groundwater samples were collected from Hamra Alasad in Al-Madinah City. The chemical and microbial characteristics of the samples were analyzed and compared with their respective standards. The results revealed that 90.7% of the samples showed higher amounts of NO3. However, 59.3% of the samples were found unfit for irrigation purposes due to a high salinity hazard. Most of the groundwater samples were highly saline, yet no sodicity hazards were anticipated as predicted by sodium adsorption ratio (SAR). Generally, the soluble cations and anions, dissolved salts, boron, and NO3− exceeded the maximum permissible limits for drinking water in most of the samples; however, Pb, Cd, As, Zn, Cu, Ni, Co, Fe, Mn, and Cr were within the permissible limits. Furthermore, 42.6%, 24.1%, 18.5%, 14.8%, 1.9%, and 37.0% of the samples were infected by a total coliforms group, fecal coliform, Escherichia coli, Staphylococcus sp., Salmonella sp., and Shigilla sp., respectively. The water quality index revealed that 3.7% of the samples were good for drinking (class II), and 9.3% were very poor (class IV). The remaining samples were unfit for drinking (class V) due to high salinity and/or microbial contamination. Durov and Piper diagrams revealed that the majority of water samples were of the calcium sulfate–chloride type. Overall, 87% of water samples were inappropriate for drinking purposes, while 77.8% were unsuitable for irrigation.


EKSPLORIUM ◽  
2017 ◽  
Vol 38 (1) ◽  
pp. 43
Author(s):  
Rismah Taufik Andhihutomo ◽  
Satrio Satrio ◽  
Rasi Prasetio ◽  
Agus Budhie Wijatna

ABSTRAKPenelitian mengenai interaksi airtanah dangkal dengan air sungai Kali Garang di Semarang, Jawa Tengah, menggunakan parameter isotop 18O dan 2H telah dilakukan. Sebanyak 16 sampel air tanah dangkal dan 3 sampel air sungai diambil untuk analisis kandungan isotop stabil d18O dan d2H menggunakan alat Liquid Water Isotope Analyzer LGR DLT-100. Hasil analisis memperlihatkan adanya dua asal daerah masukan air: daerah pertama memiliki kandungan isotop d18O antara -9,41 ‰ hingga-8,5 ‰ dan d2H antara -58,2 ‰ hingga -51,6 ‰; daerah kedua memiliki kandungan isotop d18O dan d2H masing-masing -7,15 ‰ dan -41,55 ‰. Dengan demikian, hasil tersebut mengindikasikan bahwa sampel-sampel air pertama berasal dari elevasi yang relatif lebih tinggi jika dibandingkan dengan asal sampel air kedua, namun keduanya tidak mengalami interaksi dengan air sungai. Sedangkan sampel air tanah lainnya menunjukkan bahwa satu sampel (R4) memiliki interelasi berupa pencampuran dengan air sungai dan dua sampel lainnya (L1 dan R1) mengalami pencampuran dengan air asin atau air laut. ABSTRACTA study related to shallow groundwater interaction with Kali Garang River water in Semarang, Central Java using stable isotopes of 18O and 2H has been conducted. As much as 16 groundwater and 3 river water samples were taken for stable isotopes d18O and d2H analysis using Liquid water isotope analyzer LGR DLT-100. The results of analysis shows that there are two area of water recharge origin: the first area contains d18O isotope ranging between -9.41 ‰ to -8.5 ‰ and d2H between -58.2 ‰ to -51.6 ‰; the second area contains isotopes of d18O and d2H -7.15 and -41.55 ‰, respectively. Thus, these results indicate that the first water samples originate from a higher elevation than the origin of the second water sample, but both of them have no interrelation with river water. Whereas, other groundwater samples show that the sample (R4) has interrelation (i.e. mixing) with the river water and two other samples (L1 and R1) have interrelation with salty water or seawater.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Sushanta Kumar Roy ◽  
Anwar Zahid

AbstractA synchronization study among hydrochemistry, hydrochemical facies evaluation, EC observation, salinity distribution and groundwater flow direction has been addressed to assess river water–groundwater–seawater interactions in the coastal delta of southern Bangladesh. The findings show that river water, shallow groundwater and deep groundwater interact with seawater at various intensities within the complex dynamics of hydrochemical facies evaluation. Deep groundwater is intensively influenced by seawater, where shallow groundwater is moderately affected and river water is very negligibly affected. Major cation and anion have been plotted in the Piper diagrams and hydrochemical facies diagrams (HFE-D) to clarify the result. More than 60% of the water samples of the river lie on the Ca-HCO3 (or Mg-HCO3) facies quadrant, and more than 70% of the shallow groundwater samples and more than 95% of the deep groundwater samples lie on the Na-Cl facies quadrant of the HFE-D diagram. River water types are dissimilar, and approximately 82% of facies are characterized by freshening phases and 18% by intrusion phases. Mixed water types with predominate of Na-Cl were observed in shallow groundwater where the hydrochemical facies are characterized by 53 percent freshening phases and 47 percent intrusion phases. Deep groundwater hydrochemistry clearly indicates the dominant Na-Cl type of water in the study area where only four hydrochemical facies are observed and 78 percent correspond to the intrusion phases and 22 percent to the freshening phases. Both direct and reverse cation exchange reactions take place in shallow groundwater, where deep groundwater is predominantly characterized by reverse cation exchange reactions. Two end members: seawater of Bay of Bengal and freshwater, contribute to the exchange reactions in the coastal aquifer of the study area. In terms of nitrate contamination, river waters are affected by negligible to low concentrations, shallow groundwater is affected by moderate to high concentrations and deep groundwater is affected by moderate to very high nitrate concentrations. Dissimilarity in electrical conductivity (EC) values, variation of salinity distribution maps and groundwater flow direction suggest the possible interconnections among river water, groundwater and aquifer sediments. Significant concentrations of Na+ and Cl− ions lead to seawater contamination in groundwater, and HCO3− along with Na+, Ca2+, Mg2+ in river water suggests mixing of freshwater and seawater, which could have adverse effects both in coastal delta aquatic life and in agriculture.


Author(s):  
Qiying Zhang ◽  
Panpan Xu ◽  
Hui Qian

To investigate the quality of domestic groundwater and assess its risk to inhabitants of the Guanzhong Basin, China, 191 groundwater samples were collected to analyze major ions, nitrate, pH, total dissolved solids (TDS), total hardness (TH), and electrical conductivity (EC). The physiochemical parameters, hydrochemical facies, and sources of major ions were analyzed using Durov diagrams, bivariate diagrams, and chloro-alkaline indices (CAI-I and CAI-II). The suitability of groundwater for drinking, the nitrate distribution, and human health risk (HHR) for different age groups were evaluated. The results showed that the relative abundance of cations in the groundwater samples was K++Na+ > Ca2+ > Mg2+, while that of anions was HCO3− > SO42− > Cl− > NO3−. Groundwater samples mainly contained HCO3-Na and HCO3-Ca, which were introduced mainly by rock weathering and ion exchange. The groundwater in the Guanzhong Basin contained mainly good and medium water, and the groundwater in the southern part of the Wei River was better than that north of the Wei River. Areas containing high nitrate concentrations were mainly located in the central and western parts of the Guanzhong Basin. The percentages of low risk (<45 mg/L), high risk (45–100 mg/L), and very high risk (>100 mg/L) of nitrate pollution in the study area were 90.58%, 8.9%, and 0.52%, respectively. The HHR assessment results indicated that people in the 6–12 month age group were more likely to suffer from health complications due to a higher nitrate concentration, followed by 6–11 years, 21–65 years, 18–21 years, ≥65 years, 11–16 years, and 16–18 years age groups, which was mainly due to the different exposure parameters. The results of this study will be useful in regional groundwater management and protection.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3310
Author(s):  
Yuqing Zhao ◽  
You-Kuan Zhang ◽  
Yonglin Yang ◽  
Feifei Li ◽  
Sa Xiao

Water samples from rainfall, river, springs, and wells in the Xianshui River fault region near Xialatuo, China were collected during two sampling campaigns to investigate the complex groundwater circulation in the region. The major ions, stable isotopes, and four natural radium isotopes of the water samples were analyzed, and the results were utilized to identify different groundwater circulation depths. Most water samples excluding the one at a hot spring and the one at a borehole possess similar hydrochemical compositions and lower total dissolved solids (TDS), implying that their circulation depth is relatively shallow or that residence time is short. The sample at the hot spring has high TDS and high temperature as well as the high F concentration, inferring that it may circulate at a deeper depth. The sample at the borehole contains mixed hydrochemical characteristics of other samples. Three groundwater flow systems may exist in the study area: the shallow groundwater system recharged by precipitations and local groundwater flow, the deep groundwater system recharged by the regional groundwater flow, and the intermediate one between the above two systems. The finding of the three flow systems is supported by the δ2H and δ18O as well as the apparent radium ages of the samples. The δ2H and δ18O values at the intercept of the line formed by the shallow groundwater samples and the local meteoric water line (LMWL) are similar to those of modern precipitations. The δ2H and δ18O values at the intercept of the line formed by the deep groundwater samples and the LMWL show that it is probably recharged by relatively older precipitations. The 2H and 18O values of the borehole samples are between the above two intercept points. The deep-circulated groundwater with high temperature has longer apparent radium age than other water samples. The apparent radium ages of the shallow groundwater are similar but less than that of the deep groundwater. Groundwater at the borehole may circulate at a depth between the above two. The results of this study improve our understanding of the complex groundwater circulation and enable us to better protect and manage the groundwater resources in the region.


2017 ◽  
Vol 2 (1) ◽  
pp. 36 ◽  
Author(s):  
Thilavanh Souvannachith ◽  
Doni Prakasa Eka Putra ◽  
Heru Hendrayana

Groundwater resource is an essential for various purposes in Bantul district, Yogyakarta Special Province, Indonesia, especially on Poncosari village where the water supply are depending on shallow groundwater resources. On this village, most of the houses using dug wells to provide their water needs and applying inappropriate on-site sanitation system, however there are also difference land uses. This condition increase the hazard of groundwater contamination by fecal coli bacteria and nitrate. Therefore, this research aims in term of three main objectives: firstly, to know the level of nitrate concentration in groundwater, secondly, to assess groundwater vulnerability and thirdly, to assess the level of groundwater contaminant hazard. Hydrogeology observation was conducted and 47 water samples (44 groundwater samples and 3 surface water samples) were collected from different land use type and analyze for nitrate (NO 3) content. Methodology used to assess the groundwater vulnerability was Simple Vertical Vulnerability method and the groundwater contamination hazard built based on the combination of groundwater vulnerability and nitrate loading potential map. Results show that groundwater concentrations of nitrate range from 0.09–74.80 mg/L and the highest concentration found in the settlement area. Assessment of groundwater vulnerability reveals three areas of moderate, moderate high and high classes of vulnerability due to shallow groundwater and the sandy dominated overlying material in the study area. Combination of groundwater vulnerability and nitrate loading potential map indicated that groundwater contaminant hazard of nitrate range from low to high class. High class of hazard located in the settlement area, and low hazard of nitrate contamination found in the irrigated rice field area


2021 ◽  
Author(s):  
Jabar Abdul Bari ◽  
Karthikeyan Perumal ◽  
Subagunasekar Muthuramalingam

Abstract In most regions of the present study area, Bhavani Taluk, groundwater quality is deteriorating at an alarming rate as a result of anthropogenic activities, however, little attention was given to groundwater quality and management. This research examines the quality of groundwater in Bhavani Taluk, Tamilnadu and compares its suitability for irrigation. The Bhavani region of Erode District, Tamilnadu is the most cultivated, with a considerable use of fertilizers and pesticides. Groundwater quality for irrigation purposes was assessed during the pre-monsoon season by collecting samples from 53 different locations. Physico-chemical parameters such as pH, EC, TDS, HCO3−, CO32−, Cl−, SO42−, NO3−, Ca2+, Mg2+, Na+ and K+were measured in these groundwater samples. Irrigation quality measures such as salinity hazard, sodium hazard expressed as SAR, percentage of sodium (% Na), and permeability index (PI) were calculated to evaluate groundwater quality for agricultural irrigation. Based on the classification of Electrical conductivity (EC) most of the groundwater samples are falling under the permissible limit. As per the USSL diagram, the large majority of groundwater samples fall within the category of C3-S1 and the water is suitable for irrigation. Piper trilinear diagram interpretations were made to know the chemical type of the groundwaters. The piper diagram indicates that 50% of the groundwater sample were belongs to Mg2+, Ca2+, HCO3−, and Cl−. The groundwater samples fall under Class I category according to Doneen’s Classifications.


1986 ◽  
Vol 21 (3) ◽  
pp. 351-367 ◽  
Author(s):  
Michael Sklash ◽  
Sharon Mason ◽  
Suzanne Scott ◽  
Chris Pugsley

Abstract We used seepage meters and minipiezometers to survey a 100 m by 7 km band of streambed of the St. Clair River near Sarnia, Ontario, Canada, to determine the quantity, quality, and sources of groundwater seepage into the river. The average observed seepage rate, 1.4 x 10−8 m3/s/m2, suggests higher than expected hydraulic conductivities and/or hydraulic gradients in the streambed. We found detectable levels of some organic contaminants in streambed groundwater samples from 1.0 and 1.5 m depths, however , concentrations did not exceed drinking water guidelines. Our isotopic and electrical conductivity data indicate that: (l) the streambed groundwater is not just river water, (2) groundwater from the “freshwater aquifer” at the base of the overburden Is not a significant component of the streambed groundwater, (3) some of the streambed groundwater is partially derived from a shallow groundwater flow system, and (4) an unidentified source of water with low tritium, river water-like δ18O, and very high electrical conductivity, contributes to the streambed groundwater.


2021 ◽  
Vol 11 (5) ◽  
Author(s):  
Saheed Adekunle Ganiyu ◽  
Abimbola Temitope Oyadeyi ◽  
Azeem Adedeji Adeyemi

AbstractThis study has been conducted to appraise the concentrations of selected heavy metals and total dissolved solids (TDSs) in the drinking water from shallow wells in parts of Ibadan metropolis, southwest Nigeria. Fifteen (15) water samples were collected from three representative residential locations [traditional core area (TCA), peri-urban area (PUA), and urban area (UA)] for geochemical analysis. Heavy metals and TDS were analyzed with the aid of atomic absorption spectrophotometer and calibrated meter, respectively. The mean concentration (mg/L) of Zn, Pb Mn, Fe, and Cd has been 3.930, 0.658, 0.0304, 1.698, and 0.501, respectively, and as a consequence, the order of abundance of studied metals was Zn > Fe > Pb > Cd > Mn. Concentrations of Zn, Fe, Pb, and Cd were higher than recommended standards in 60%, 86.7%, 100%, and 100% of groundwater samples, respectively. However, at all points tested, the mean concentrations of Mn and TDS in water samples lie within the safe limits set by World Health Organization. The evaluation of geoaccumulation index (Igeo), enrichment factor (EF), and contamination factor suggests that representative water samples were low-to-moderate contamination. The potential ecological risk index advocates low-to-moderate ecological risk in TCA and PUA, while it demonstrated exclusive “moderate” risk in UA. Further, the range of pollution load index (PLI) (0.55–1.32) in both TCA and PUA shows nil-to-moderate pollution status, while PLI values > 1 in UA indicate moderate contaminated state. The degree of contamination in groundwater showed the following trends: UA > TCA > PUA in the study area. Moreover, the results of EF and quantification of contamination of analyzed metals in water samples indicate geogenic and anthropogenic inputs. The contribution of studied metals to the incidence of non-cancer risk via oral intake within the residential sites follows the order: cadmium > lead > zinc > iron > manganese. The hazard index as a result of ingested heavy metals for the three population classes surpasses the acceptable range in the order of infant < child < adult. Cadmium and lead made considerable impact to the estimation of cancer risk in the study area for the three human population categories. Factor analysis extracted only one component that explained 94.64% of the entire variance, while cluster analysis identified three distinct groups based on similar water quality characteristics. Based on the findings of the study, awareness programs toward protecting the shallow groundwater sources should be launched, encouraged, and sustained. Moreover, the study suggests better hygienic practices and pre-treatment of contaminated water before consumption.


Sign in / Sign up

Export Citation Format

Share Document