scholarly journals Assessment of the Levels of Oxidative Stress, Muscle Damage, and Psychomotor Abilities of Special Force Soldiers during Military Survival Training

Author(s):  
Paweł Różański ◽  
Ewa Jówko ◽  
Andrzej Tomczak

The aim of this study was to analyze the changes in biochemical markers of oxidative stress and muscle damage, as well as psychomotor abilities during a military survival training. The study included 15 soldiers of special unit (SU), that completed 48 h military survival training combined with sleep deprivation. Before the training (P1), after 24 h (P2), and after 48 h of training (P3), blood samples were taken to measure biochemical markers. At the same time points, the measurements of divided attention and handgrip strength were conducted. Glutathione peroxidase activity decreased significantly at P3, in comparison with P1 and P2 (p < 0.0001), however, no changes were observed in other biochemical markers (i.e., lipid hydroperoxides, creatine kinase and superoxide dismutase activity) throughout the survival training (p > 0.05). The divided attention index was improved significantly at P2 and P3, as compared to P1 (p < 0.05). A tendency to change in maximum strength was found during the training period (main time effect; p = 0.08). Moreover, the strength differentiation (i.e., 50% maximum strength; 50%max) was higher at P3 than at P1 and P2 (p < 0.05). In conclusion, the 48 h survival training in the SU soldiers does not cause oxidative stress or muscle tissue damage, as well as any deterioration, and even improvement in psychomotor abilities. However, the change in strength differentiation (i.e., the production above 60%max instead of target 50%max) after the training may point to deterioration in motor control. Although it should be confirmed in further study with a more numerous group of soldiers, our findings indicate that the special unit soldiers will be able to perform, in a correct manner, specialized tasks related to their long-term activities, especially those which require divided attention. However, participation in long-term survival training, even with low workload, combined with sleep deprivation, results in a deterioration in motor control which may indicate the relevance of monitoring coordination motor abilities/skills in the training process of special unit soldiers.

2017 ◽  
Vol 104 (1) ◽  
pp. 77-90 ◽  
Author(s):  
K Aloui ◽  
S Abedelmalek ◽  
H Chtourou ◽  
DP Wong ◽  
N Boussetta ◽  
...  

The aim of this study was to investigate the effect of time-of-day on oxidative stress, cardiovascular parameters, muscle damage parameters, and hormonal responses following the level-1 Yo-Yo intermittent recovery test (YYIRT). A total of 11 healthy subjects performed an intermittent test (YYIRT) at two times-of-day (i.e., 07:00 h and 17:00 h), with a recovery period of ≥36 h in-between, in a randomized order. Blood samples were taken at the rest (baseline) and immediately (post-YYIRT) after the YYIRT for measuring oxidative stress, biochemical markers, and hormonal response. Data were statistically analyzed using one-way and two-way repeated measures ANOVA and Bonferroni test at p < 0.05. Observed power (α = 0.05) and partial eta-squared were used. Our results showed that oxygen uptake (VO2max), maximal aerobic speed, and the total distance covered tended to be higher in the evening (17:00 h). There was also a main effect of time-of-day for cortisol and testosterone concentration, which were higher after the YYIRT in the morning (p < 0.05). The heart rate peak and the rating of perceived exertion scales were lower in the morning (p < 0.05). However, the plasma glucose (p < 0.01), malondialdehyde, creatine kinase (p < 0.01), lactate dehydrogenase (p < 0.05), high-density lipoprotein (p < 0.01), total cholesterol (p < 0.01), and triglycerides (p < 0.05) were higher after the YYIRT in the evening. Low-density lipoprotein, systolic blood pressure, diastolic blood pressure, and lactate levels (p > 0.05) were similar for the morning and evening test. In conclusion, our findings suggest that aerobic performance presents diurnal variation with great result observed in the evening accompanied by an improvement of hormonal, metabolic, and oxidative responses. These data may help to guide athletes and coaches and contribute to public health recommendations on exercise and muscle damage particularly in the competitive periods.


2014 ◽  
Vol 39 (4) ◽  
pp. 432-438 ◽  
Author(s):  
João Renato Silva ◽  
António Rebelo ◽  
Franklim Marques ◽  
Laura Pereira ◽  
André Seabra ◽  
...  

This study aimed to analyze changes in performance, muscle function, and stress-related biochemical markers in professional soccer players (n = 14) at 4 timepoints (3 for performance and 4 for stress-related biochemical markers) during the soccer season [Formula: see text] preseason (E1), midseason (E2), end of the season (E3) [Formula: see text] and after the end of the recovery period (E4). Performance in 5- and 30-m sprints, countermovement jump, and agility, and maximal isokinetic knee extension and knee flexion strength were measured (E1 to E3). We observed increased in-season levels of myoglobin (E2 > E1 and E4; p < 0.05), a higher testosterone/cortisol ratio (T/C), and increased levels of creatine kinase (CK), C-reactive protein, superoxide dismutase (SOD), protein sulfhydryls (–SH), and malondialdehyde (E2 and E3 > E1 and E4; p < 0.05). Lower cortisol concentrations (E3 < E1 and E4; p < 0.05) and glutathione reductase activity (E3 < E2 and E4; p < 0.05) were observed at the end of the season. T/C, CK, SOD, –SH, and malondialdehyde decreased during the off-season, and cortisol and glutathione reductase increased (E3 < E4; p < 0.05). Agility increased in E2 and E3 (p < 0.01). Significant correlations were found during the season between hormonal and muscle function parameters (r = 0.56–0.86; p < 0.05). In addition, in E2, significant associations were observed between match-accumulated time (MATE2; minutes played by each player during the competition period), performance, and hormonal and redox parameters (r = 0.456–0.615; p < 0.05). In conclusion, this study shows that soccer players face significant changes in biomarkers of physiologic strain (muscle damage and oxidative stress-related markers) during the season, but values return to normal during the off-season. Additionally, MAT influences physical, hormonal, and oxidative stress-related parameters in professional soccer players.


Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1353 ◽  
Author(s):  
Cristina Nocella ◽  
Vittoria Cammisotto ◽  
Fabio Pigozzi ◽  
Paolo Borrione ◽  
Chiara Fossati ◽  
...  

The role of oxidative stress, an imbalance between reactive oxygen species production (ROS) and antioxidants, has been described in several patho-physiological conditions, including cardiovascular, neurological diseases and cancer, thus impacting on individuals’ lifelong health. Diet, environmental pollution, and physical activity can play a significant role in the oxidative balance of an organism. Even if physical training has proved to be able to counteract the negative effects caused by free radicals and to provide many health benefits, it is also known that intensive physical activity induces oxidative stress, inflammation, and free radical-mediated muscle damage. Indeed, variations in type, intensity, and duration of exercise training can activate different patterns of oxidant–antioxidant balance leading to different responses in terms of molecular and cellular damage. The aim of the present review is to discuss (1) the role of oxidative status in athletes in relation to exercise training practice, (2) the implications for muscle damage, (3) the long-term effect for neurodegenerative disease manifestations, (4) the role of antioxidant supplementations in preventing oxidative damages.


2020 ◽  
Vol 91 (9) ◽  
pp. 720-724
Author(s):  
Andrzej Tomczak ◽  
Ewa Jówko ◽  
Paweł Różański

INTRODUCTION: It is important for military commanders to know the extent of fatigue experienced by soldiers undergoing a long-term military training. This knowledge can enable them to determine the level of physical capabilities of soldiers. The present study aimed to evaluate changes in the level of chosen biochemical parameters in blood during the survival training of Polish Naval Academy cadets. METHODS: Participating voluntarily in the research study were 14 cadets. All subjects were men, ages 23.1 2.0 yr. During the 36-h survival training, the subjects were deprived of sleep. The following biochemical parameters were assessed in venous blood collected from the cadets: creatine kinase (CK) activity, concentration of lipid hydroperoxides (LOOHs), superoxide dismutase activity (SOD), and glutathione peroxidase activity (GPx). RESULTS: After 36 h of training a significant increase was observed in CK (from 183.1 up to 530.2 U L1), LOOHs (from 1.72 up to 3.74 mol L1), and GPx (from 27.4 up to 36.4 U gHb1). After 12 h of rest, the level of LOOHs returned to the initial level, GPx activity did not change significantly, and CK activity was significantly higher than those at baseline (422.3 U L1). DISCUSSION: The 36-h survival training increased oxidative stress, which contributed to the damage to muscle cells in the group of cadets of the Polish Naval Academy. The intensity of postexercise changes in the level of oxidative damage indicators is dependent on the initial level of enzymatic antioxidant defense. The 12-h recovery proved to be too short to regenerate the damaged muscle tissue. Tomczak A, Jówko E, Różański P. Survival training effects on oxidative stress and muscle damage biomarkers of naval cadets. Aerosp Med Hum Perform. 2020; 91(9):720724.


Author(s):  
Ewa Jówko ◽  
Paweł Różański ◽  
Andrzej Tomczak

The aim of this study was to analyze changes in oxidative stress and muscle damage markers during a 36-h survival training combined with sleep deprivation. The study included 23 male students of physical education (specialty: Physical Education for Uniformed Services), randomly divided into the survival or control group. The students in the survival group completed a 36-h survival training with moderate to low physical activity, without the possibility to sleep. The students in the control group performed only physical activity included in daily routines and had a normal sleep pattern. No significant changes in measured parameters were seen in the control group throughout the study period. In the survival group, plasma lipid hydroperoxides (LHs) and creatine kinase (CK) activity increased at 24 h and remained elevated up to 36 h (main effects for LHs: time, p = 0.006 and group × time, p = 0.00008; main effects for CK: time, p = 0.000001, group, p = 0.005, and group × time, p = 0.000001). A 12-h recovery was sufficient to normalize both LHs and CK to the pre-training level; in fact, the post-recovery LHs and CK levels were even lower than at baseline. Residual total antioxidant capacity (TAC) of plasma (without the major constituents: uric acid and albumin) was elevated at both 24 h and 36 h of survival training, but not following a 12-h recovery (main effects: group, p = 0.001 and group × time, p = 0.04). In turn, the activity of glutathione peroxidase (GPx) in whole blood and superoxide dismutase (SOD) in erythrocytes decreased between 24 h and 36 h of survival training (main group effect for GPx, p = 0.038 and SOD, p = 0.045). In conclusion, these findings imply that a 36-h survival training with sleep deprivation impairs enzymatic antioxidant defense, increases lipid peroxidation, and induces muscle damage. Our findings also indicate that at least in the case of young physically active men, a 12-h recovery after the 36-h period of physical activity with sleep deprivation may be sufficient for the normalization of oxidative and muscle damage markers and restoration of blood prooxidant-antioxidant homeostasis.


Author(s):  
A. V. Sukhova ◽  
E. N. Kryuchkova

The influence of general and local vibration on bone remodeling processes is investigated. The interrelations between the long - term exposure of industrial vibration and indicators of bone mineral density (T-and Z-criteria), biochemical markers of bone formation (osteocalcin, alkaline phosphatase) and bone resorption (ionized calcium, calcium/creatinine) were established.


2020 ◽  
Vol 54 (5) ◽  
pp. 23-28
Author(s):  
E.V. Fomina ◽  
◽  
T.B. Kukoba ◽  

Testing of 25 cosmonauts showed that the amount of resistance training weight loading in long-term space mission influences dynamics of the leg-muscle strength and velocity recovery. On Earth, the loads equal from 70 to 130 % of the body mass is sufficient for keeping up endurance and maximum strength moments of shin and thigh muscles. In the group of cosmonauts who had not used the strength training device or chosen loads less than 30 % of the body mass the leg-muscle maximum strength and thigh endurance were decreased substantially on day 4 of return and all the more by day 15 back on Earth.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 120-121
Author(s):  
Chloey P Guy ◽  
Catherine L Wellman ◽  
David G Riley ◽  
Charles R Long ◽  
Ron D Randel ◽  
...  

Abstract We previously determined that prenatal stress (PNS) differentially affected methylation of DNA from leukocytes of 28-d-old calves. Specifically, COX14 (cytochrome c oxidase (COX) assembly factor) and CKMT1B (mitochondrial creatine kinase U-type) were hypomethylated and COA5 (COX assembly factor 5), COX5A (COX subunit 5A), NRF1 (nuclear respiratory factor 1), and GSST1 (glutathione S-transferase theta-1) were hypermethylated in PNS compared to non-PNS calves (P ≤ 0.05). Our current objective was to test the hypothesis that PNS exhibit impaired mitochondrial function and greater oxidative stress than non-PNS calves. Blood and longissimus dorsi muscle samples were collected from yearling Brahman calves whose mothers were stressed by 2 h transportation at 60, 80, 100, 120, and 140 days of gestation (PNS; 8 bulls, 6 heifers) and non-PNS calves (4 bulls, 6 heifers). Serum was evaluated for the stress hormone, cortisol, and muscle damage marker, creatine kinase; muscle was analyzed for mitochondrial volume density and function by citrate synthase (CS) and COX activities, respectively, concentration of malondialdehyde, a lipid peroxidation marker, and activity of the antioxidant, superoxide dismutase (SOD). Data were analyzed using mixed linear models with treatment and sex as fixed effects. Serum cortisol was numerically higher in PNS than non-PNS calves but was not statistically different. Muscle CS and COX activities relative to protein were greater in PNS than non-PNS calves (P ≤ 0.03), but COX relative to CS activity was similar between groups. Activity of COX was greater in bulls than heifers (P = 0.03), but no other measure was affected by sex. All other measures were unaffected by PNS. Prenatal stress did not affect markers of muscle damage and oxidative stress in yearling Brahman calves at rest but mitochondrial volume density and function were greater in PNS calves. Acute stressors induce oxidative stress, so implications of differences in mitochondria in PNS calves following a stressor should be investigated.


Life Sciences ◽  
2021 ◽  
Vol 272 ◽  
pp. 119265
Author(s):  
Ozgen Kilic-Erkek ◽  
Vildan Caner ◽  
Gulcin Abban-Mete ◽  
Ikbal Cansu Baris ◽  
Melek Bor-Kucukatay

Sign in / Sign up

Export Citation Format

Share Document