scholarly journals Expression Profiling Identifies TWIST2 Target Genes in Setleis Syndrome Patient Fibroblast and Lymphoblast Cells

Author(s):  
Noe E. Crespo ◽  
Alexandra Torres-Bracero ◽  
Jessicca Y. Renta ◽  
Robert J. Desnick ◽  
Carmen L. Cadilla

Background: Setleis syndrome (SS) is a focal facial dermal dysplasia presenting with bilateral temporal skin lesions, eyelash abnormalities and absent meibomian glands. SS is a rare autosomal recessive disorder caused by mutations in the TWIST2 gene, which codes for a transcription factor of the bHLH family known to be involved in skin and facial development. Methods: We obtained gene expression profiles by microarray analyses from control and SS patient primary skin fibroblast and lymphoblastoid cell lines. Results: Out of 983 differentially regulated genes in fibroblasts (fold change ≥ 2.0), 479 were down-regulated and 509 were up-regulated, while in lymphoblasts, 1248 genes were down-regulated and 73 up-regulated. RT-PCR reactions confirmed altered expression of selected genes. Conclusions: TWIST2 is described as a repressor, but expression profiling suggests an important role in gene activation as well, as evidenced by the number of genes that are down-regulated, with a much higher proportion of down-regulated genes found in lymphoblastoid cells from an SS patient. As expected, both types of cell types showed dysregulation of cytokine genes. These results identify potential TWIST2 target genes in two important cell types relevant to rare disorders caused by mutations in this bHLH gene.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4351-4351
Author(s):  
Wei-Feng Dong ◽  
Naoto Takahashi ◽  
Matthew N. Bainbridge ◽  
Andrea R. Hull ◽  
Stuart A. Scott ◽  
...  

Abstract RIZ1 (PRDM2) is a tumor suppressor gene on 1p36 that frequently undergoes deletion, rearrangements, and loss of heterozygosity in a broad spectrum of tumors. RIZ1 is a member of the nuclear protein methyltransferase superfamily involved in chromatin remodeling. RIZ1 contains a ~130 amino acid conserved domain (PR or SET) that is important in chromatin-mediated regulation of gene expression and in the development of cancer. RIZ1 methylates Histone H3 on K9 and this activity may play a role in transcription repression as H3-K9 methylation is known to be associated with repression. Aberrant activities or mistargeting of chromatin modifying activities are proving to have unexpected links to cancer. We and others have shown that RIZ1 expression is down regulated in human leukemias and in the human erythroleukemia cell line K562. Expression of RIZ1 in K562 reduced proliferation, increased apoptosis, and promoted erythroid differentiation. To understand how RIZ1’s DNA binding, methyltransferase, and transcription repressor functions are related to its tumor suppressor activity it is necessary to characterize RIZ1 target genes. We used DNA microarrays to globally monitor how RIZ1 affects gene expression profiles. We constructed a K562 cell line with RIZ1 stably integrated under the control of a CMV promoter and analyzed the gene expression profiles of K652 and K562 + RIZ1 using a 42K Stanford human gene microarray. By comparing the gene expression profiles of these cell lines, we identified potential RIZ1 gene targets that are up and down regulated in the presence of RIZ1. In total, we identified 5 upregulated genes and 20 down regulated genes using significance analysis of microarrays (SAM) and standard deviation filter analysis of the gene expression data. RIZ1-mediated changes in gene expression profiling indicate that RIZ1 is potentially involved in the regulation and connection of the IGF-1 (IGF-1, IGFBP2) and integrin (LMS1) pathways, and in the activation of the TGF-β (SPARC) pathway. The genes perturbed by RIZ1 expression suggest that the tumor suppressor properties of RIZ1 arise from its control of proliferation, apoptosis and differentiation using these pathways. Finally, we observed an overrepresentation of the SP-1 transcription factor binding sites in genes that are upregulated in the absence of RIZ1. This correlates with the ability of RIZ1 to recognize SP1 sequences.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3840-3840
Author(s):  
Carsten Poggel ◽  
Timo Adams ◽  
Sabine Martin ◽  
Carola Pickel ◽  
Nicole Prahl ◽  
...  

Abstract Microarray-based gene expression profiling has been used to develop clinically relevant molecular classifiers for many different diseases. Furthermore, it has been shown for various chronic diseases that specific gene expression patterns are reflected at the level of blood cells. However, blood is a complex tissue comprising numerous cell types. Therefore, the contribution of rare cell types to a whole blood expression profile might not be detected and a substantial proportion of what is usually reported as “up-regulation” or “down-regulation” might actually be the result of a shift in cell populations and not of a true regulatory process. In order to circumvent these problems, several techniques have been established to analyze purified subpopulations rather than whole blood samples. Previously, it has been shown, for example, that reproducible gene expression profiles can be generated by positive selection of blood cell subsets from PBMCs1. As the preparation of PBMCs by, for example, Ficoll is time-consuming, inconvenient, and not amenable to automation, we have set up a combined direct whole blood cell separation and gene expression profiling protocol. By using Whole Blood CD14 MicroBeads in combination with the autoMACS Pro™ Separator, the separation protocol generally allowed enrichment of monocytes from whole blood within 30 min with purities higher than 90%. In combination with the depletion of neutrophils, the major source of contaminating RNA, purities increased to over 95% for all tested blood donors. Monocytes included the CD14bright/CD16− as well as the CD14dim/CD16+ populations. To assess the reproducibility of gene expression profiles and the influence of several experimental parameters, monocytes were sorted from 5 ml whole blood. RNA was extracted and hybridized to microarrays and the Pearson correlation coefficients of pairwise comparisons were calculated. Technical repeats of monocyte analysis from blood donated at different days showed a higher correlation coefficient than whole blood RNA. Blood storage at room temperature resulted in a strong deregulation of many genes, whereas blood stored at 4°C showed minimal changes, which is in agreement with previous studies. Skipping the centrifugation step, which is used to remove unbound MicroBeads did not alter the gene expression profiles. Incubation of sorted cells in PrepProtect™ Stabilization Buffer showed no alteration of gene expression thus enabling the shipping of cells without liquid nitrogen. Monocytes play a crucial role in diseases like atherosclerosis. Our rapid and simple protocol for combined direct cell sorting from whole blood and gene expression profiling of monocytes might help to ease the discovery of new biomarkers and to screen and monitor patients. 1 Lyons et al., BMC Genomics (2007), 8:64.


2020 ◽  
Vol 318 (3) ◽  
pp. G419-G427 ◽  
Author(s):  
Tatsuhide Nabeshima ◽  
Shin Hamada ◽  
Keiko Taguchi ◽  
Yu Tanaka ◽  
Ryotaro Matsumoto ◽  
...  

The activation of the Kelch-like ECH-associated protein 1 (Keap1)-NF-E2-related factor 2 (Nrf2) pathway contributes to cancer progression in addition to oxidative stress responses. Loss-of-function Keap1 mutations were reported to activate Nrf2, leading to cancer progression. We examined the effects of Keap1 deletion in a cholangiocarcinoma mouse model using a mutant K-ras/ p53 mouse. Introduction of the Keap1 deletion into liver-specific mutant K-ras/ p53 expression resulted in the formation of invasive cholangiocarcinoma. Comprehensive analyses of the gene expression profiles identified broad upregulation of Nrf2-target genes such as Nqo1 and Gstm1 in the Keap1-deleted mutant K-ras/ p53 expressing livers, accompanied by upregulation of cholangiocyte-related genes. Among these genes, the transcriptional factor Sox9 was highly expressed in the dysplastic bile duct. The Keap-Nrf2-Sox9 axis might serve as a novel therapeutic target for cholangiocarcinoma. NEW & NOTEWORTHY The Keap1-Nrf2 system has a wide variety of effects in addition to the oxidative stress response in cancer cells. Addition of the liver-specific Keap1 deletion to mice harboring mutant K-ras and p53 accelerated cholangiocarcinoma formation, together with the hallmarks of Nrf2 activation. This process involved the expansion of Sox9-positive cells, indicating increased differentiation toward the cholangiocyte phenotype.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bing He ◽  
Ping Chen ◽  
Sonia Zambrano ◽  
Dina Dabaghie ◽  
Yizhou Hu ◽  
...  

AbstractMolecular characterization of the individual cell types in human kidney as well as model organisms are critical in defining organ function and understanding translational aspects of biomedical research. Previous studies have uncovered gene expression profiles of several kidney glomerular cell types, however, important cells, including mesangial (MCs) and glomerular parietal epithelial cells (PECs), are missing or incompletely described, and a systematic comparison between mouse and human kidney is lacking. To this end, we use Smart-seq2 to profile 4332 individual glomerulus-associated cells isolated from human living donor renal biopsies and mouse kidney. The analysis reveals genetic programs for all four glomerular cell types (podocytes, glomerular endothelial cells, MCs and PECs) as well as rare glomerulus-associated macula densa cells. Importantly, we detect heterogeneity in glomerulus-associated Pdgfrb-expressing cells, including bona fide intraglomerular MCs with the functionally active phagocytic molecular machinery, as well as a unique mural cell type located in the central stalk region of the glomerulus tuft. Furthermore, we observe remarkable species differences in the individual gene expression profiles of defined glomerular cell types that highlight translational challenges in the field and provide a guide to design translational studies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuan-chi Teng ◽  
Alfredo Leonardo Porfírio-Sousa ◽  
Giulia Magri Ribeiro ◽  
Marcela Corso Arend ◽  
Lindolfo da Silva Meirelles ◽  
...  

Abstract Background Peripheral arterial disease (PAD) affects millions of people and compromises quality of life. Critical limb ischemia (CLI), which is the most advanced stage of PAD, can cause nonhealing ulcers and strong chronic pain, and it shortens the patients’ life expectancy. Cell-based angiogenic therapies are becoming a real therapeutic approach to treat CLI. Pericytes are cells that surround vascular endothelial cells to reinforce vessel integrity and regulate local blood pressure and metabolism. In the past decade, researchers also found that pericytes may function as stem or progenitor cells in the body, showing the potential to differentiate into several cell types. We investigated the gene expression profiles of pericytes during the early stages of limb ischemia, as well as the alterations in pericyte subpopulations to better understand the behavior of pericytes under ischemic conditions. Methods In this study, we used a hindlimb ischemia model to mimic CLI in C57/BL6 mice and explore the role of pericytes in regeneration. To this end, muscle pericytes were isolated at different time points after the induction of ischemia. The phenotypes and transcriptomic profiles of the pericytes isolated at these discrete time points were assessed using flow cytometry and RNA sequencing. Results Ischemia triggered proliferation and migration and upregulated the expression of myogenesis-related transcripts in pericytes. Furthermore, the transcriptomic analysis also revealed that pericytes induce or upregulate the expression of a number of cytokines with effects on endothelial cells, leukocyte chemoattraction, or the activation of inflammatory cells. Conclusions Our findings provide a database that will improve our understanding of skeletal muscle pericyte biology under ischemic conditions, which may be useful for the development of novel pericyte-based cell and gene therapies.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Christine Kleinert ◽  
Matthieu Blanchet ◽  
François Gagné ◽  
Michel Fournier

The determination of changes in gene expression profiles with xenobiotic dose will allow identifying biomarkers and modes of toxicant action. The harbor seal (Phoca vitulina) 11B7501 B lymphoma cell line was exposed to 1, 10, 100, 1000, 10,000, or 25,000 μg/L 17α-ethinyl estradiol (EE2, the active compound of the contraceptive pill) for 24 h. Following exposure, RNA was extracted and transformed into cDNA. Transcript expression in exposed vs. control lymphocytes was analyzed via RT-qPCR to identify genes with altered expression. Our analysis indicates that gene expression for all but the reference gene varied with dose, suggesting that different doses induce distinct physiological responses. These findings demonstrate that RT-qPCR could be used to identify immunotoxicity and relative dose in harbor seal leukocytes.


2020 ◽  
Author(s):  
Wenying Yu ◽  
Mei Lin ◽  
Minghui Peng ◽  
Huijuan Yan ◽  
Jie Zhou ◽  
...  

AbstractPeroxisomes are ubiquitous organelles in eukaryotic cells that fulfill various important metabolic functions. In this study, we investigated the role of Docking/Translocation Module (DTM) peroxins, mainly FvPex8, FvPex13, FvPex14, and FvPex33, in Fusarium verticillioides virulence and fumonisin B1 (FB1) biosynthesis. Protein interaction experiments suggested that FvPex13 serves as the core subunit of F. verticillioides DTM. When we generated gene deletion mutants (ΔFvpex8, ΔFvpex13, ΔFvpex14, ΔFvpex33, ΔFvpex33/14) and examined whether the expression of other peroxin genes were affected in the DTM mutants, ΔFvpex8 strain showed most drastic changes to PEX gene expression profiles. Deletion mutants exhibited disparity in carbon source utilization and defect in cell wall integrity when stress agents were applied. Under nutrient starvation, mutants also showed higher levels of lipid droplet accumulation. Notably, ΔFvpex8 mutant showed significant FB1 reduction and altered expression of FUM1 and FUM19 genes. However, FvPex13 was primarily responsible for virulence, while ΔFvpex33/14 double mutant also showed virulence defect. In summary, our study suggests that FvPex13 is the core component of DTM, regulating peroxisome membrane biogenesis as well as PTS1- and PTS2-mediated transmembrane cargo transportation. Importantly, we predict FvPex8 as a key component in DTM that affects peroxisome function in FB1 biosynthesis in F. verticillioides.


2020 ◽  
Author(s):  
Benedicto Crespo-Facorro ◽  
Miguel Ruiz-Veguilla ◽  
Javier Vazquez-Bourgon ◽  
Ana C. Sanchez-Hidalgo ◽  
Nathalia Garrido-Torres ◽  
...  

Background: Antipsychotics suppress expression of inflammatory cytokines and inducible inflammatory enzymes. Elopiprazole (a phenylpiperazine antipsychotic drug in phase 1) has been characterized as a therapeutic drug to treat SARS-CoV-2 infection in a repurposing study. We aim to investigate the potential effects of aripiprazole (an FDA approved phenylpiperazine) on COVID19-related immunological parameters. Methods: Differential gene expression profiles of non-COVID versus COVID RNA-Seq samples (CRA002390 project in GSA database) and drug-naive patients with psychosis at baseline and after three months of aripiprazole treatment was identified. An integrative analysis between COVID and aripiprazole immunomodulatory antagonist effects was performed. Findings: 82 out the 377 genes (21.7%) with expression significantly altered by aripiprazole have also their expression altered in COVID-19 patients and in 93.9% of these genes their expression is reverted by aripiprazole. The number of common genes with expression altered in both analyses is significantly higher than expected (Fisher's Exact Test, two tail; P value=3.2e-11). 11 KEGG pathways were significantly enriched with genes with altered expression both in COVID-19 patients and aripiprazole medicated schizophrenia patients (P adj<0.05). The most significant pathways were associated to the immune system such as the inflammatory bowel disease (IBD) (the most significant pathway with a P adj of 0.00021), Th1 and Th2 cell differentiation and B cell receptor signaling pathway, all three related to the defense against infections. Interpretation: This exploratory investigation may provide further support to the notion that protective effect is exerted by phenylpiperazine by modulating the immunological dysregulation associated to COVID-19. Along with many ongoing studies and clinical trials, repurposing available medications could be of use in countering SARS-CoV-2 infection, but require further studies and trials.


2005 ◽  
Vol 23 (9) ◽  
pp. 1826-1838 ◽  
Author(s):  
B. Michael Ghadimi ◽  
Marian Grade ◽  
Michael J. Difilippantonio ◽  
Sudhir Varma ◽  
Richard Simon ◽  
...  

Purpose There is a wide spectrum of tumor responsiveness of rectal adenocarcinomas to preoperative chemoradiotherapy ranging from complete response to complete resistance. This study aimed to investigate whether parallel gene expression profiling of the primary tumor can contribute to stratification of patients into groups of responders or nonresponders. Patients and Methods Pretherapeutic biopsies from 30 locally advanced rectal carcinomas were analyzed for gene expression signatures using microarrays. All patients were participants of a phase III clinical trial (CAO/ARO/AIO-94, German Rectal Cancer Trial) and were randomized to receive a preoperative combined-modality therapy including fluorouracil and radiation. Class comparison was used to identify a set of genes that were differentially expressed between responders and nonresponders as measured by T level downsizing and histopathologic tumor regression grading. Results In an initial set of 23 patients, responders and nonresponders showed significantly different expression levels for 54 genes (P < .001). The ability to predict response to therapy using gene expression profiles was rigorously evaluated using leave-one-out cross-validation. Tumor behavior was correctly predicted in 83% of patients (P = .02). Sensitivity (correct prediction of response) was 78%, and specificity (correct prediction of nonresponse) was 86%, with a positive and negative predictive value of 78% and 86%, respectively. Conclusion Our results suggest that pretherapeutic gene expression profiling may assist in response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. The implementation of gene expression profiles for treatment stratification and clinical management of cancer patients requires validation in large, independent studies, which are now warranted.


Sign in / Sign up

Export Citation Format

Share Document