scholarly journals Methodology of Studying Effects of Mobile Phone Radiation on Organisms: Technical Aspects

Author(s):  
Katerina Bartosova ◽  
Marek Neruda ◽  
Lukas Vojtech

The negative influence of non-ionizing electromagnetic radiation on organisms, including humans, has been discussed widely in recent years. This paper deals with the methodology of examining possible harmful effects of mobile phone radiation, focusing on in vivo and in vitro laboratory methods of investigation and evaluation and their main problems and difficulties. Basic experimental parameters are summarized and discussed, and recent large studies are also mentioned. For the laboratory experiments, accurate setting and description of dosimetry are essential; therefore, we give recommendations for the technical parameters of the experiments, especially for a well-defined source of radiation by Software Defined Radio.

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Jean-Philippe Sinnes ◽  
Ulrike Bauder-Wüst ◽  
Martin Schäfer ◽  
Euy Sung Moon ◽  
Klaus Kopka ◽  
...  

Abstract Background The AAZTA chelator and in particular its bifunctional derivative AAZTA5 was recently investigated to demonstrate unique capabilities to complex diagnostic and therapeutic trivalent radiometals under mild conditions. This study presents a comparison of 68Ga, 44Sc and 177Lu-labeled AAZTA5-PSMA-617 with DOTA-PSMA-617 analogues. We evaluated the radiolabeling characteristics, in vitro stability of the radiolabeled compounds and evaluated their binding affinity and internalization behavior on LNCaP tumor cells in direct comparison to the radiolabeled DOTA-conjugated PSMA-617 analogs. Results AAZTA5 was synthesized in a five-step synthesis and coupled to the PSMA-617 backbone on solid phase. Radiochemical evaluation of AAZTA5-PSMA-617 with 68Ga, 44Sc and 177Lu achieved quantitative radiolabeling of > 99% after less than 5 min at room temperature. Stabilities against human serum, PBS buffer and EDTA and DTPA solutions were analyzed. While there was a small degradation of the 68Ga complex over 2 h in human serum, PBS and EDTA/DTPA, the 44Sc and 177Lu complexes were stable at 2 h and remained stable over 8 h and 1 day. For all three compounds, i.e. [natGa]Ga-AAZTA5-PSMA-617, [natSc]Sc-AAZTA5-PSMA-617 and [natLu]Lu-AAZTA5-PSMA-617, in vitro studies on PSMA-positive LNCaP cells were performed in direct comparison to radiolabeled DOTA-PSMA-617 yielding the corresponding inhibition constants (Ki). Ki values were in the range of 8–31 nM values which correspond with those of [natGa]Ga-DOTA-PSMA-617, [natSc]Sc-DOTA-PSMA-617 and [natLu]Lu-DOTA-PSMA-617, i.e. 5–7 nM, respectively. Internalization studies demonstrated cellular membrane to internalization ratios for the radiolabeled 68Ga, 44Sc and 177Lu-AAZTA5-PSMA-617 tracers (13–20%IA/106 cells) in the same range as the ones of the three radiolabeled DOTA-PSMA-617 tracers (17–20%IA/106 cells) in the same assay. Conclusions The AAZTA5-PSMA-617 structure proved fast and quantitative radiolabeling with all three radiometal complexes at room temperature, excellent stability with 44Sc, very high stability with 177Lu and medium stability with 68Ga in human serum, PBS and EDTA/DTPA solutions. All three AAZTA5-PSMA-617 tracers showed binding affinities and internalization ratios in LNCaP cells comparable with that of radiolabeled DOTA-PSMA-617 analogues. Therefore, the exchange of the chelator DOTA with AAZTA5 within the PSMA-617 binding motif has no negative influence on in vitro LNCaP cell binding characteristics. In combination with the faster and milder radiolabeling features, AAZTA5-PSMA-617 thus demonstrates promising potential for in vivo application for theranostics of prostate cancer.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 320
Author(s):  
Thaís Pereira da Silva ◽  
Fernando Jacomini de Castro ◽  
Larissa Vuitika ◽  
Nayanne Louise Costacurta Polli ◽  
Bruno César Antunes ◽  
...  

Phospholipases-D (PLDs) found in Loxosceles spiders’ venoms are responsible for the dermonecrosis triggered by envenomation. PLDs can also induce other local and systemic effects, such as massive inflammatory response, edema, and hemolysis. Recombinant PLDs reproduce all of the deleterious effects induced by Loxosceles whole venoms. Herein, wild type and mutant PLDs of two species involved in accidents—L. gaucho and L. laeta—were recombinantly expressed and characterized. The mutations are related to amino acid residues relevant for catalysis (H12-H47), magnesium ion coordination (E32-D34) and binding to phospholipid substrates (Y228 and Y228-Y229-W230). Circular dichroism and structural data demonstrated that the mutant isoforms did not undergo significant structural changes. Immunoassays showed that mutant PLDs exhibit conserved epitopes and kept their antigenic properties despite the mutations. Both in vitro (sphingomyelinase activity and hemolysis) and in vivo (capillary permeability, dermonecrotic activity, and histopathological analysis) assays showed that the PLDs with mutations H12-H47, E32-D34, and Y228-Y229-W230 displayed only residual activities. Results indicate that these mutant toxins are suitable for use as antigens to obtain neutralizing antisera with enhanced properties since they will be based on the most deleterious toxins in the venom and without causing severe harmful effects to the animals in which these sera are produced.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Juan Manuel Sacnun ◽  
Rebecca Herzog ◽  
Maria Bartosova ◽  
Claus Schmitt ◽  
Klaus Kratochwill

Abstract Background and Aims The composition of all currently available peritoneal dialysis (PD) fluids triggers morphological and functional changes in the peritoneal membrane. Periodic exposure leads to vasculopathy, hypervascularization, and diabetes-like damage of vessels, eventually leading to failure of the technique. Patients undergoing dialysis generally, have a high risk of cardiovascular events. It is currently unclear if there is a mechanistic link between peritoneal membrane failure and cardiovascular risk. In vitro and in vivo studies have shown that cytoprotective additives (e.g. dipeptide alanyl-glutamine (AlaGln) or kinase inhibitor lithium chloride (LiCl)) to PDF reduce peritoneal damage. Here, we developed an experimental model for investigating effects of these cytoprotective additives in PDF in the cardiovascular context. Method For modelling the peritoneal membrane in vitro, mesothelial and endothelial cells were co-cultured in transwell plates. Mesothelial cells were grown in the upper compartment and primary human umbilical vein endothelial cells (HUVEc) or primary microvascular cells were grown in the lower compartment. PDF with or without cytoprotective compounds, was added to the upper compartment to only expose mesothelial cells directly to different dilutions of the fluid. Effects on cell damage was assessed by quantification of lactate-dehydrogenase (LDH) release and live-dead staining of cells. Proteome profiles were analysed for both cell-types separately and in combination using two-dimensional difference gel electrophoresis (2D-DiGE) and liquid chromatography coupled to mass spectrometry (LC-MS). In vitro findings were related to PD-induced arteriolar changes based on abundance profiles of micro-dissected omental arterioles of children treated with conventional PD-fluids and age-matched controls with normal renal function. Results Marked cellular injury of HUVEc after PD-fluid exposure was associated with a molecular landscape of the enriched biological process clusters ‘glucose catabolic process’, ‘cell redox homeostasis’, ‘RNA metabolic process’, ‘protein folding’, ‘regulation of cell death’, and ‘actin cytoskeleton reorganization’ that characterize PD-fluid cytotoxicity and counteracting cellular repair process respectively. PDF-induced cell damage was reduced by AlaGln and LiCl both in mesothelial and endothelial cells. Proteome analysis revealed perturbation of major cellular processes including regulation of cell death and cytoskeleton reorganization. Selected markers of angiogenesis, oxidative stress, cell junctions and transdifferentiation were counter-regulated by the additives. Co-cultured cells yielded differently regulated pathways following PDF exposure compared to separate culture. Comparison to human arterioles confirmed overlapping protein regulation between endothelial cells in vitro and in vivo, proving harmful effects of PD-fluids on endothelial cells leading to drastic changes of the cellular process landscape. Conclusion In summary, this study shows harmful effects of PD-fluids also effecting endothelial cells and elucidates potential mechanisms by which cytoprotective additives may counteract the signalling axis between local peritoneal damage and systemic vasculopathy. An in vitro co-culture system may be an attractive approach to simulate the peritoneal membrane for testing direct and indirect effects of cytoprotective additives in PDF. When cultured and stressed in close proximity cells may respond differently. Characterisation of PD-induced perturbations will allow identifying molecular mechanisms linking the peritoneal and cardiovascular context, offering therapeutic targets to reduce current limitations of PD and ultimately decreasing cardiovascular risk of dialysis patients.


2002 ◽  
Vol 48 (11) ◽  
pp. 2030-2043 ◽  
Author(s):  
Glenn F Billman ◽  
Amy B Hughes ◽  
Golde G Dudell ◽  
Elizabeth Waldman ◽  
Lisa M Adcock ◽  
...  

Abstract Background: The management of critically ill infants and neonates includes frequent determination of arterial blood gas, electrolyte, and hematocrit values. An objective of attached point-of-care patient monitoring is to provide clinically relevant data without the adverse consequences associated with serial phlebotomy. Methods: We prospectively determined the mean difference (and SD of the difference) from laboratory methods of an in-line, ex vivo monitor, the VIA LVM Blood Gas and Chemistry Monitoring System® (VIA LVM Monitor; Metracor Technologies, Inc.), in 100 critically ill neonates and infants at seven children’s hospitals. In doing so, we examined monitor stability with continuous use. In vivo patient test results from laboratory benchtop analyzers were compared with those from the VIA LVM Monitor on paired samples. In a separate in vitro comparison, benchtop analyzer and monitor test results were compared on whole-blood split samples. Results: A total of 1414 concurrent, paired-sample measurements were obtained. The mean differences (SD of differences) from laboratory methods and r values for the combined data for the VIA LVM Monitor from the seven sites were 0.001 (0.026) and 0.97 for pH, 0.7 (3.6) mmHg and 0.94 for Pco2, 4.2 (9.6) mmHg and 0.98 for Po2, 0.0 (2.9) mmol/L and 0.87 for sodium, 0.1 (0.2) mmol/L and 0.96 for potassium, and 0.3% (2.9%) and 0.90 for hematocrit. Performance results were similar among the study sites with increasing time of monitor use and between in vivo paired-sample and in vitro split-sample test results. Conclusion: The VIA LVM Monitor can be used to assess critically ill neonates and infants.


2013 ◽  
Vol 84 (3) ◽  
pp. 555-560 ◽  
Author(s):  
Gursimrit K. Grewal Bach ◽  
Ysidora Torrealba ◽  
Manuel O. Lagravère

ABSTRACT Objective: To use a systematic review to determine which materials and technique/protocol present the highest success rate in bonding brackets to porcelain surfaces. Materials and Methods: Different databases were searched without limitations up to July 2013. Additionally, the bibliographies of the finally selected articles were hand searched to identify any relevant publications that were not identified earlier. In vitro and in vivo articles were included. Results: No in vivo articles were found that fulfilled the inclusion criteria. A total of 45 in vitro articles met all inclusion criteria. They were published between 2000 to July 2013. Conclusions: The best protocol described in this review is the etching of 9.6% hydrofluoric acid for 1 minute, rinsed for 30 seconds, and then air-dried. The etching of hydrofluoric acid should be followed by an application of silane. Considering the harmful effects of etching with hydrofluoric acid, another appropriate suggestion is mechanical roughening with sandblasting followed by an application of silane.


Author(s):  
Reza Nejat ◽  
Ahmad Shahir Sadr ◽  
David Najafi

Introduction: Neuroinflammation is the inflammatory reaction in the central nervous system (CNS) provoked by diverse insults. This phenomenon results in a cascade of release of inflammatory mediators and intracellular messengers such as reactive oxygen species. The elicited responses are the cause of many neurological and neurodegenerative disorders. Erythropoietin (EPO) has been considered effective in attenuating this inflammatory process in the CNS, yet its administration in COVID-19 needs meticulously designed studies. Discussion: Neuroinflammation in COVID-19 due to probable contribution of renin-angiotensin system dysregulation resulting in surplus of Ang II and owing to the synergistic interaction between this octapeptide and EPO needs special consideration. Both of these compounds increase intracellular Ca2+ which may induce release of cytokine and inflammatory mediators leading to aggravation of neuroinflammation. In addition, Ang II elevates HIF even in normoxia which by itself increases EPO. It is implicated that EPO and HIF may likely increase in patients with COVID-19 which makes administration of EPO to these patients hazardous. Furthermore, papain-like protease of SARS-CoV2 as a deubiquitinase may also increase HIF. Conclusion: It is hypothesized that administration of EPO to patients with COVID-19-induced neuroinflammation may not be safe and in case EPO is needed for any reason in this disease adding of losartan may block AT1R-mediated post-receptor harmful effects of Ang II in synergism with EPO. Inhibition of papain-like protease might additionally decrease HIF in this disease. More in vitro, in vivo and clinical studies are needed to validate these hypotheses.


2008 ◽  
Vol 77 (4) ◽  
pp. 581-588 ◽  
Author(s):  
R. Szabóová ◽  
A. Lauková ◽  
Ľ. Chrastinová ◽  
M. Simonová ◽  
V. Strompfová ◽  
...  

Salvia spp. belongs to the Labiatae family and is characterized by antimicrobial and antiinflammatory effect. The aim of this study was to test its in vitro and in vivo inhibitory effect against bacteria as well as to find an alternative possibility to use sage in the rabbit ecosystem examining biochemical, zootechnical and inmunological indicators, compared to the commercial feed mixture Xtract. Using the sage extract in in vitro tests, its inhibitory effect was noted. Under in vivo conditions, in the experimental group with sage (EG1), reduction of Pseudomonas-like sp. (p < 0.01) and E. coli (p < 0.01) was noted after 7 days of sage application compared to the control group CG2 (with Robenidin) as well as after 21 days of sage extract application, when the reduction of coagulase-negative staphylococci (p < 0.01) was detected (in comparison with the experimental group-EG2, Xtract group). In the caecum of rabbits from EG1, higher values of lactic, acetic and butyric acids were noted. The values of propionic acid were not influenced. Biochemical indicators were not influenced; however, the values of GSH Px were lower in EG1 compared to EG2. Higher phagocytic activity (18%) was noted in EG1 than in EG2 (13%) after 21 days of additives application. The reduction of Eimeria sp. oocysts was demonstrated in EG1 (sage group) after 7 days of sage application comparing to CG2 (217 OPG to 566 OPG). The animals in both experimental groups achieved higher feed consumption and weight gain, lower mortality compared to both controls. Neither of the additives had a negative influence on the health status and growth performance of rabbits.


2019 ◽  
Vol 9 (2Apr) ◽  
Author(s):  
S M J Mortazavi ◽  
A Dehghani Nazhvani ◽  
M Paknahad

Background: Previous studies have shown that exposure to electromagnetic fields produced by magnetic resonance imaging or mobile phones can lead to increased microleakage of dental amalgam.Objective: The aim of the present study was to investigate the effect of electromagnetic field of a commercial dental light cure device and a common GSM mobile phone on microleakage of amalgam restorations.Materials and Methods: Identical class V cavities were prepared on the buccal surfaces of 60 non-carious extracted human teeth. The samples were randomly divided into 4 groups of 20 samples each. The samples in the first group were not exposed to electromagnetic fields, while the second and the third groups were exposed to electromagnetic fields produced by a commercial light cure device, or mobile phone radiation (60 min), respectively. The fourth group was exposed to electromagnetic radiations emitted by both mobile phone for 60 min and light cure device. Then, teeth samples were scored for microleakage according to a standard dye penetration protocol by examination under a stereomicroscope.Results: The mean score of microleakage in the fourth group (light cure + mobile phone) was significantly higher than that of the control group (P =0.030). Moreover, the scores of microleakage in this group were significantly higher than that of the second group (light cure only) (P= 0.043).Conclusion: Exposure of amalgam restorations to electromagnetic fields produced by both light cure devices and mobile phones can synergistically increase the microleakage of amalgam restorations.


2019 ◽  
Vol 18 ◽  
pp. 153473541983531 ◽  
Author(s):  
Ilyas Sahin ◽  
Birdal Bilir ◽  
Shakir Ali ◽  
Kazim Sahin ◽  
Omer Kucuk

Soy consumption in human diet has been linked to decreased incidence of a variety of cancers, suggesting a potential role of soy products in cancer prevention and control. Furthermore, a substantial body of evidence in the literature suggests that soy supplementation may improve the efficacy and prevent the adverse effects of cancer chemotherapy and radiation therapy. Isoflavones constitute the predominant anticancer bioactive compounds in soy. Genistein, which is the most abundant and active isoflavone in soy, has a multitude of effects on cancer cells, including inhibition of NF-κB activation and DNA methylation, enhancement of histone acetylation, inhibition of cell growth and metastasis, and antiangiogenic, anti-inflammatory, and anti-oxidant effects. Isoflavones are orally bioavailable, easily metabolized, and usually considered safe. In this article, we review in vitro and in vivo evidence as well as the results of clinical and epidemiological studies on the effects of soy isoflavones, with a focus on sensitization of cancer cells to chemotherapy and radiation while at the same time protecting normal cells from the harmful effects of these treatments.


Sign in / Sign up

Export Citation Format

Share Document