scholarly journals Antimicrobial Resistance of Acetobacter and Komagataeibacter Species Originating from Vinegars

Author(s):  
Eva Cepec ◽  
Janja Trček

Consumers’ preference towards healthy and novel foods dictates the production of organic unfiltered bottled vinegar that still contains acetic acid bacteria. After ingesting vinegar, the bacteria come into close contact with the human microbiota, creating the possibility of horizontal gene transfer, including genetic determinants for antibiotic resistance. Due to the global spread of antimicrobial resistance (AMR), we analyzed the AMR of Acetobacter and Komagataeibacter species originating mainly from vinegars. Six antibiotics from different structural groups and mechanisms of action were selected for testing. The AMR was assessed with the disk diffusion method using various growth media. Although the number of resistant strains differed among the growth media, 97.4%, 74.4%, 56.4%, and 33.3% of strains were resistant to trimethoprim, erythromycin, ciprofloxacin, and chloramphenicol, respectively, on all three media. Moreover, 17.9% and 53.8% of all strains were resistant to four and three antibiotics of different antimicrobial classes, respectively. We then looked for antimicrobial resistance genes in the genome sequences of the reference strains. The most common genetic determinant potentially involved in AMR encodes an efflux pump. Since these genes pass through the gastrointestinal tract and may be transferred to human microbiota, further experiments are needed to analyze the probability of this scenario in more detail.

2020 ◽  
Vol 83 (7) ◽  
pp. 1110-1114 ◽  
Author(s):  
MARGARIDA SOUSA ◽  
VANESSA SILVA ◽  
ADRIANA SILVA ◽  
NUNO SILVA ◽  
JESSICA RIBEIRO ◽  
...  

ABSTRACT The prevalence and diversity of Staphylococcus species from wild European rabbits (Oryctolagus cuniculus) in the Azores were investigated, and the antibiotic resistance phenotype and genotype of the isolates were determined. Nasal samples from 77 wild European rabbits from São Jorge and São Miguel islands in Azores were examined. Antibiotic susceptibility of the isolates was determined using the Kirby-Bauer disk diffusion method, and the presence of antimicrobial resistance genes and virulence factors was determined by PCR. The genetic lineages of S. aureus isolates were characterized by spa typing and multilocus sequence typing. A total of 49 staphylococci were obtained from 35 of the 77 wild rabbits. Both coagulase-positive (8.2%) and coagulase-negative (91.8%) staphylococci were detected: 4 S. aureus, 17 S. fleurettii, 13 S. sciuri, 7 S. xylosus, 4 S. epidermidis, and 1 each of S. simulans, S. saprophyticus, S. succinus, and S. equorum. The four S. aureus isolates showed methicillin susceptibility and were characterized as spa type t272/CC121, Panton-Valentine leukocidin negative, and hlB positive. Most of the coagulase-negative staphylococci showed resistance to fusidic acid and beta-lactams, and multidrug resistance was identified especially among S. epidermidis isolates. The mecA gene was detected in 20 isolates of the species S. fleurettii and S. epidermidis, associated with the blaZ gene in one S. epidermidis isolate. Five antimicrobial resistance genes were detected in one S. epidermidis isolate (mecA,dfrA,dfrG,aac6′-aph2′′, and ant4). Our results highlight that wild rabbits are reservoirs or “temporary hosts” of Staphylococcus species with zoonotic potential, some of them carrying relevant antimicrobial resistances. HIGHLIGHTS


2020 ◽  
Author(s):  
Saba Asgharzadeh Marghmalek ◽  
Reza Valadan ◽  
Mehrdad Gholami ◽  
Mohtaram Nasrolahei ◽  
Hamid Reza Goli

Abstract Background: The role of the hospital environment as a source of pathogenic bacteria in recent studies has been poorly investigated. This study investigated the distribution of antimicrobial resistance genes and virulence determinants in Enterococcus species isolated from hospital environment in Sari, Iran. Method: Overall, 90 enterococci strains were obtained from high touch surfaces of four hospitals in Sari, Iran. These environmental samples were obtained from bathroom, beds, tables, doorknobs, room keys, wheelchair and walls in the patient and staff’s rooms. The resistance profile of the isolates was determined by disk diffusion method. Seven resistance genes and two virulence associated genes were evaluated molecularly by multiplex PCR. Results: According to the PCR, 42 (46.66%) of them were E. faecalis and 48 (53.33%) others were detected as E. faecium. Also, 28 (66.6%) E. faecalis and 18 (37.5%) E. faecium isolates were multidrug-resistant (MDR). Among all 90 environmental isolates 54 (60%), 54 (60%), 8 (8.8%), 8 (8.8%), 60 (66.6%), 26 (28.8%), and 24 (26.6%) isolates contained tetM, tetL, vanA, vanB, ermB, aac(6´)-Ie-aph(2´´)-Ia, and aph (3´)-IIIa, respectively. Moreover, all isolates were investigated for the presence of virulence genes and 88 (97.7%) of isolates had esp gene, and 16 (17.7%) had ace.Conclusions: This report showed that the environmental isolates of Enterococcus are the major sources of antibiotic resistance genes that can transfer them to the clinical isolates of bacteria in hospital settings. An effective following strategy should be organized to clearance and stop emergence of these pathogenic bacteria.


2020 ◽  
Vol 8 (9) ◽  
pp. 1317
Author(s):  
Laura Ruiz-Ripa ◽  
Paula Gómez ◽  
Carla Andrea Alonso ◽  
María Cruz Camacho ◽  
Yolanda Ramiro ◽  
...  

The objective of this study was to determine the prevalence and diversity of coagulase-negative staphylococci (CoNS) species from wild birds in Spain, as well as to analyze the antimicrobial resistance phenotype/genotype and the virulence gene content. During 2015–2016, tracheal samples of 242 wild birds were collected in different regions of Spain for staphylococci recovery. The species identification was performed using MALDI-TOF. The antimicrobial resistance phenotype and genotype was investigated by the disk diffusion method and by PCR, respectively. The presence of the virulence genes lukF/S-PV, tst, eta, etb, etd and scn was investigated by PCR. Moreover, CoNS carrying the mecA gene were subjected to SCCmec typing. Of the tested animals, 60% were CoNS-carriers, and 173 CoNS isolates were recovered from the 146 positive animals, which belonged to 11 species, with predominance of S. sciuri (n = 118) and S. lentus (n = 25). A total of 34% of CoNS isolates showed a multidrug resistance phenotype, and 42 mecA-positive methicillin-resistant CoNS (MRCoNS) were detected. The isolates showed resistance to the following antimicrobials (percentage of resistant isolates/antimicrobial resistance genes detected): penicillin (49/ blaZ, mecA), cefoxitin (24/ mecA), erythromycin and/or clindamycin (92/ erm(B), erm(C), erm(43), msr(A), mph(C), lnu(A), lsa(B), vga(A) and sal(A)), gentamicin and/or tobramycin (5/ aac(6′)-Ie-aph(2″)-Ia, ant(4′)-Ia), streptomycin (12/str), tetracycline (17/ tet(K), tet(L), tet(M)), ciprofloxacin (4), chloramphenicol (1/ fexA), fusidic acid (86/ fusB, fusD) and trimethoprim–sulfamethoxazole (1/ dfrK). None of the isolates harbored the lukF/S-PV, eta, etb, etd and scn genes, but two S. sciuri isolates (1%) carried the tst gene. Wild birds are frequently colonized by CoNS species, especially S. sciuri. We identified scavenging on intensively produced livestock and feeding on landfills as risk factors for CoNS carriage. High proportions of MRCoNS and multidrug resistant CoNS were detected, which coupled with the presence of important virulence genes is of concern.


2020 ◽  
Vol 83 (11) ◽  
pp. 1941-1946
Author(s):  
JULIANO GONÇALVES PEREIRA ◽  
VANESSA MENDONÇA SOARES ◽  
LEONARDO ERENO TADIELO ◽  
TASSIANA RAMIRES ◽  
WLADIMIR PADILHA da SILVA

ABSTRACT We aimed to perform serotyping and the antimicrobial resistance profile of Salmonella spp. and Listeria monocytogenes strains isolated from raw meats imported illegally into Brazil along the borders of Argentina and Uruguay. Distinct isolates of Salmonella spp. (n = 6) and L. monocytogenes (n = 25) obtained from 270 of these food products of earlier work were serotyped and tested for antimicrobial resistance by agar disk diffusion method. For strains that were considered phenotypically resistant, antimicrobial resistance genes were investigated: strA, strB, floR, tetA, tetB, blaZ, blaTEM, ermB, ermC, and ereB to Salmonella sp. and blaZ and mecA to L. monocytogenes. All Salmonella isolates were identified as Salmonella Infantis; they were multidrug resistant and harbored the genes blaTEM (n = 6), strA (n = 1), strB (n = 1), floR (n = 1), ermB (n = 1), tetA (n = 3), and tetB (n = 3). L. monocytogenes isolates belonged to serovars 1/2a (n = 1), 1/2b (n = 14), 1/2c (n = 2), and 4b (n = 8), showed resistance only to penicillin G (n = 12), and did not show the blaZ and mecA genes. The results demonstrated that illegal foods that are commercialized in the Brazilian international border with Argentina and Uruguay may harbor foodborne pathogens, and some of them have multidrug resistance characteristics, such as Salmonella, emphasizing the need for greater control of international food transit in Brazil, especially in the region evaluated. HIGHLIGHTS


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 844
Author(s):  
Pichapak Sriyapai ◽  
Chaiwat Pulsrikarn ◽  
Kosum Chansiri ◽  
Arin Nyamniyom ◽  
Thayat Sriyapai

The antimicrobial resistance of nontyphoidal Salmonella has become a major clinical and public health problem. Southeast Asia has a high level of multidrug-resistant Salmonella and isolates resistant to both fluoroquinolone and third-generation cephalosporins. The incidence of co-resistance to both drug classes is a serious therapeutic problem in Thailand. The aim of this study was to determine the antimicrobial resistance patterns, antimicrobial resistance genes and genotypic relatedness of third-generation cephalosporins and/or fluoroquinolone-resistant Salmonella Choleraesuis isolated from patients with systemic salmonellosis in Thailand. Antimicrobial susceptibility testing was performed using the agar disk diffusion method, and ESBL production was detected by the combination disc method. A molecular evaluation of S. Choleraesuis isolates was performed using PCR and DNA sequencing. Then, a genotypic relatedness study of S. Choleraesuis was performed by pulse field gel electrophoresis. All 62 cefotaxime-resistant S. Choleraesuis isolates obtained from 61 clinical specimens were multidrug resistant. Forty-four isolates (44/62, 71.0%) were positive for ESBL phenotypes. Based on the PCR sequencing, 21, 1, 13, 23, 20 and 6 ESBL-producing isolates harboured the ESBL genes blaCTX-M-14, blaCTX-M-15, blaCTX-M-55, blaCMY-2, blaACC-1 and blaTEM-1, respectively. This study also found that nine (9/62, 14.5%) isolates exhibited co-resistance to ciprofloxacin and cefotaxime. All of the co-resistant isolates harboured at least one PMQR gene. The qnr genes and the aac(6′)-Ib-cr gene were the most prevalent genes detected. The QRDR mutation, including the gyrA (D87Y and D87G) and parC (T57S) genes, was also detected. PFGE patterns revealed a high degree of clonal diversity among the ESBL-producing isolates.


2021 ◽  
Vol 9 (1) ◽  
pp. 12
Author(s):  
Walid Oueslati ◽  
Mohamed Ridha Rjeibi ◽  
Hayet Benyedem ◽  
Aymen Mamlouk ◽  
Fatma Souissi ◽  
...  

This study was conducted in northeastern Tunisia to estimate both the prevalence and the risk factors of Salmonella in broiler flocks as well as to characterize the isolated multidrug-resistant (MDR) Salmonella strains. In the present study, a total number of 124 farms were sampled; Salmonella isolates were identified by the alternative technique VIDAS Easy Salmonella. The susceptibility of Salmonella isolates was assessed against 21 antimicrobials using the disk diffusion method on Mueller–Hinton agar using antimicrobial discs. Some antimicrobial resistance genes were identified using PCR. The prevalence rate of Salmonella infection, in the sampled farms, was estimated at 19.9% (64/322). Moreover, a total number of 13 different serotypes were identified. High rate of resistance was identified against nalidixic acid (82.85%), amoxicillin (81.25%), streptomycin (75%), and ciprofloxacin (75%). Alarming level of resistance to ertapenem (12.5%) was noticed. A total of 87.5% (56/64) of isolated strains were recognized as MDR. Three MDR strains were extended-spectrum β-lactamases (ESBL)-producers and three MDR strains were cephalosporinase-producers. The blaCTX-M gene was amplified in all the three ESBL strains. The qnrB gene was not amplified in fluoroquinolones-resistant strains. The tetA and tetB genes were amplified in 5% (2/40) and 2.5% (1/40) of tetracycline-resistant strains, respectively. The dfrA1 gene was amplified in five of the 20 trimethoprim-resistant strains. The mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5 genes were not amplified in any of the phenotypically colistin-resistant strains. In terms of integrase genes int1 and int2, only gene class 2 was amplified in 11% (7/64) of analyzed strains. Risk factors, such as the poor level of cleaning and disinfection, the lack of antimicrobial treatment at the start of the breeding, and a crawl space duration lower than 15 days, were associated with high Salmonella infection in birds. These data should be considered when preparing salmonellosis control programs in Tunisian broiler flocks.


2011 ◽  
Vol 77 (9) ◽  
pp. 3052-3060 ◽  
Author(s):  
M. A. Argudín ◽  
B.-A. Tenhagen ◽  
A. Fetsch ◽  
J. Sachsenröder ◽  
A. Käsbohrer ◽  
...  

ABSTRACTA series of 100Staphylococcus aureusisolates ascribed to sequence type 398 (ST398) and recovered from different sources (healthy carrier and diseased pigs, dust from pig farms, milk, and meat) in Germany were investigated for their virulence and antimicrobial resistance genetic background. Antimicrobial resistance was determined by the disk diffusion method. Virulence and resistance determinants (37 and 31 genes, respectively) were tested by PCR. Only two virulence profiles, including the accessory gene regulatoragrIand three or four hemolysin-encoding genes, were detected. In contrast, 33 resistance profiles were distinguished (only 11 were shown by more than one isolate). Fifty-nine isolates were multiresistant (four or more antimicrobial classes), and 98 were methicillin resistant (mecApositive). All of the ST398 isolates showed resistance to tetracycline [encoded bytet(M) alone or together withtet(K) and/ortet(L)]. In addition, 98% were resistant to other antimicrobials, including macrolide-lincosamine-streptogramin B (70%, encoded byermA,ermB, andermC, alone or in combination), trimethoprim (65%, mostly due todfrKanddfrG), kanamycin and gentamicin [29% and 14%, respectively, mainly related toaac(6′)-Ie-aph(2″)-Iaand/orant(4′)-Iabut also toaph(3′)-IIIa], chloramphenicol (9%,fexAorcfr), quinupristin-dalfopristin (9%), ciprofloxacin (8%), and trimethoprim-sulfamethoxazole (4%). The heterogeneity of the resistance profiles underlines the ability of the ST398 clone to acquire multiple antimicrobial resistance genes. However, the virulence gene content of the tested isolates was low. Continuous surveillance is needed to clarify whether its pathogenicity potential for animals and humans will increase over time.


Author(s):  
Qian Zeng ◽  
Shuzhen Xiao ◽  
Feifei Gu ◽  
Weiping He ◽  
Qing Xie ◽  
...  

Urinary tract infection (UTI) is one of the most common bacterial infections and UTI is the most common extraintestinal infectious disease entity in women worldwide. Uropathogenic Escherichia coli (UPEC) is the leading cause of UTI. While antimicrobial resistance has emerged as one of the principal problems of UTI, little is known about the epidemiology of UPEC isolated from female patients in Shanghai. This study aimed to describe the antimicrobial resistance and molecular epidemiology of UPEC isolated from female patients in Shanghai, China. UPEC isolates were collected from female patients from July 2019 to June 2020 in Shanghai and a total of 151 isolates were obtained randomly. Antimicrobial susceptibility testing was performed using the disk diffusion method. Multilocus sequencing type, phylogenetic groups, antimicrobial resistance genes, and virulence genes were detected by polymerase chain reaction. In our study, no carbapenem-resistant isolates were found, but fluoroquinolone-resistant and multi-drug resistant UPEC accounted for 62.25% and 42.38%, respectively. The phylogenetic group B2 (58.94%) predominated, followed by phylogenetic group D (26.49%). The most prevalent sequence type was ST1193 (25.83%), which was first reported in Shanghai. The rate of extended-spectrum β-lactamase (ESBL)-positive isolates was 39.74% and the dominant ESBL genotype was blaCTX-M-14 (21/60), followed by blaCTX-M-55 (12/60). Mutations in gyrA were detected in the majority of fluoroquinolone-resistant isolates (90/94), followed by parC (85/94) and parE (71/94). The aac (3) -IIa was also found in 85% of aminoglycoside resistance isolates. Among 151 UPEC isolates, the common virulence genes were csgA (97.35%), fimH (92.72%), sitA (82.12%), and malX (65.56%). In conclusion, the high antimicrobial resistance of UPEC isolated from female patients, harboring a series of virulence genes, are troublesome for medical practitioners in Shanghai. At present, the prevalent ST1193 and emerging blaCTX-M-55 make UTI therapy more challenging.


2021 ◽  
Vol 9 (2) ◽  
pp. 326
Author(s):  
Frederick Adzitey ◽  
Nurul Huda ◽  
Amir Husni Mohd Shariff

Meat is an important food source that can provide a significant amount of protein for human development. The occurrence of bacteria that are resistant to antimicrobials in meat poses a public health risk. This study evaluated the occurrence and antimicrobial resistance of E. coli (Escherichia coli) isolated from raw meats, ready-to-eat (RTE) meats and their related samples in Ghana. E. coli was isolated using the USA-FDA Bacteriological Analytical Manual and phenotypic antimicrobial susceptibility test was performed by the disk diffusion method. Of the 200 examined meats and their related samples, 38% were positive for E. coli. Notably, E. coli was highest in raw beef (80%) and lowest in RTE pork (0%). The 45 E. coli isolates were resistant ≥ 50% to amoxicillin, trimethoprim and tetracycline. They were susceptible to azithromycin (87.1%), chloramphenicol (81.3%), imipenem (74.8%), gentamicin (72.0%) and ciprofloxacin (69.5%). A relatively high intermediate resistance of 33.0% was observed for ceftriaxone. E. coli from raw meats, RTE meats, hands of meat sellers and working tools showed some differences and similarities in their phenotypic antimicrobial resistance patterns. Half (51.1%) of the E. coli isolates exhibited multidrug resistance. The E. coli isolates showed twenty-two different resistant patterns, with a multiple antibiotic resistance index of 0.0 to 0.7. The resistant pattern amoxicillin (A, n = 6 isolates) and amoxicillin-trimethoprim (A-TM, n = 6 isolates) were the most common. This study documents that raw meats, RTE meats and their related samples in Ghana are potential sources of antimicrobial-resistant E. coli and pose a risk for the transfer of resistant bacteria to the food chain, environment and humans.


2018 ◽  
Author(s):  
Christian Vinueza-Burgos ◽  
David Ortega-Paredes ◽  
Cristian Narváez ◽  
Lieven De Zutter ◽  
Jeannete Zurita

AbstractAntimicrobial resistance (AR) is a worldwide concern. Up to a 160% increase in antibiotic usage in food animals is expected in Latin American countries. The poultry industry is an increasingly important segment of food production and contributor to AR. The objective of this study was to evaluate the prevalence, AR patterns and the characterization of relevant resistance genes in Extended Spectrum β-lactamases (ESBL) and AmpC E. coli from large poultry farms in Ecuador. Sampling was performed from June 2013 to July 2014 in 6 slaughterhouses that slaughter broilers from 115 farms totaling 384 flocks. Each sample of collected caeca was streaked onto TBX agar supplemented with cefotaxime (3 mg/l). In total, 176 isolates were analyzed for antimicrobial resistance patterns by the disk diffusion method and for blaCTX-M, blaTEM, blaCMY, blaSHV, blaKPC, and mcr-1 by PCR and sequencing. ESBL and AmpC E. coli were found in 362 flocks (94.3%) from 112 farms (97.4%). We found that 98.3% of the isolates were multi-resistant to antibiotics. Low resistance was observed for ertapenem and nitrofurantoin. The most prevalent ESBL genes were the blaCTX-M (90.9%) blaCTX-M-65, blaCTX-M-55 and blaCTX-M-3 alleles. Most of the AmpC strains presented the blaCMY-2 gene. Three isolates showed the mcr-1 gene. Poultry production systems represent a hotspot for antimicrobial resistance in Ecuador, possibly mediated by the extensive use of antibiotics. Monitoring this sector in national and regional plans of antimicrobial resistance surveillance should therefore be considered.


Sign in / Sign up

Export Citation Format

Share Document