scholarly journals Maize WRKY Transcription Factor ZmWRKY106 Confers Drought and Heat Tolerance in Transgenic Plants

2018 ◽  
Vol 19 (10) ◽  
pp. 3046 ◽  
Author(s):  
Chang-Tao Wang ◽  
Jing-Na Ru ◽  
Yong-Wei Liu ◽  
Meng Li ◽  
Dan Zhao ◽  
...  

WRKY transcription factors constitute one of the largest transcription factor families in plants, and play crucial roles in plant growth and development, defense regulation and stress responses. However, knowledge about this family in maize is limited. In the present study, we identified a drought-induced WRKY gene, ZmWRKY106, based on the maize drought de novo transcriptome sequencing data. ZmWRKY106 was identified as part of the WRKYII group, and a phylogenetic tree analysis showed that ZmWRKY106 was closer to OsWRKY13. The subcellular localization of ZmWRKY106 was only observed in the nucleus. The promoter region of ZmWRKY106 included the C-repeat/dehydration responsive element (DRE), low-temperature responsive element (LTR), MBS, and TCA-elements, which possibly participate in drought, cold, and salicylic acid (SA) stress responses. The expression of ZmWRKY106 was induced significantly by drought, high temperature, and exogenous abscisic acid (ABA), but was weakly induced by salt. Overexpression of ZmWRKY106 improved the tolerance to drought and heat in transgenic Arabidopsis by regulating stress-related genes through the ABA-signaling pathway, and the reactive oxygen species (ROS) content in transgenic lines was reduced by enhancing the activities of superoxide dismutase (SOD), peroxide dismutase (POD), and catalase (CAT) under drought stress. This suggested that ZmWRKY106 was involved in multiple abiotic stress response pathways and acted as a positive factor under drought and heat stress.

2017 ◽  
Author(s):  
Wenzhi Cao ◽  
Yao Wang ◽  
Min Shi ◽  
Xiaolong Hao ◽  
Weiwei Zhao ◽  
...  

AbstractTanshinones, one group of bioactive diterpenes, were widely used in the treatment of cardiovascular diseases. WRKYs play important roles in plant metabolism, but their regulation mechanism in S. miltiorrhiza remains elusive. In this study, one WRKY transcription factor SmWRKY1 was isolated and characterized from S. miltiorrhiza. Multiple sequence alignment and phylogenetic tree analysis showed SmWRKY1 shared high homology with other plant WRKYs such as CrWRKY1. SmWRKY1 were predominantly expressed in leaves and stems, and was responsive to salicylic acid (SA), methyl jasmonate (MeJA) and nitric oxide (NO) treatment. Subcellular localization analysis found that SmWRKY1 was localized in the nucleus. Over-expression of SmWRKY1 significantly elevated the transcripts of genes involved in MEP pathway especially 1-deoxy-D-xylulose 5-phosphate synthase (SmDXS) and 1-deoxy-D-xylulose 5-phosphate reductoisomerase (SmDXR), resulted in over 6 folds increase in tanshinones production in transgenic lines (up to 13.731mg/g dry weight (DW)) compared with the control lines. Dual-luciferase (Dual-LUC) assay showed that SmWRKY1 can positively regulate SmDXR expression by binding to its promoter. Our work revealed that SmWRKY1 participated in the regulation of tanshinones biosynthesis and acted as a positive regulator through activating SmDXR in the MEP pathway, thus discloses a new insight to further excavate the regulation mechanism of tanshinones biosynthesis.


2019 ◽  
Vol 28 (14) ◽  
pp. 2319-2329 ◽  
Author(s):  
Kohei Hamanaka ◽  
Atsushi Takata ◽  
Yuri Uchiyama ◽  
Satoko Miyatake ◽  
Noriko Miyake ◽  
...  

AbstractDisorders of sex development (DSDs) are defined as congenital conditions in which chromosomal, gonadal or anatomical sex is atypical. In many DSD cases, genetic causes remain to be elucidated. Here, we performed a case–control exome sequencing study comparing gene-based burdens of rare damaging variants between 26 DSD cases and 2625 controls. We found exome-wide significant enrichment of rare heterozygous truncating variants in the MYRF gene encoding myelin regulatory factor, a transcription factor essential for oligodendrocyte development. All three variants occurred de novo. We identified an additional 46,XY DSD case of a de novo damaging missense variant in an independent cohort. The clinical symptoms included hypoplasia of Müllerian derivatives and ovaries in 46,XX DSD patients, defective development of Sertoli and Leydig cells in 46,XY DSD patients and congenital diaphragmatic hernia in one 46,XY DSD patient. As all of these cells and tissues are or partly consist of coelomic epithelium (CE)-derived cells (CEDC) and CEDC developed from CE via proliferaiton and migration, MYRF might be related to these processes. Consistent with this hypothesis, single-cell RNA sequencing of foetal gonads revealed high expression of MYRF in CE and CEDC. Reanalysis of public chromatin immunoprecipitation sequencing data for rat Myrf showed that genes regulating proliferation and migration were enriched among putative target genes of Myrf. These results suggested that MYRF is a novel causative gene of 46,XY and 46,XX DSD and MYRF is a transcription factor regulating CD and/or CEDC proliferation and migration, which is essential for development of multiple organs.


2016 ◽  
Vol 155 (5) ◽  
pp. 777-790 ◽  
Author(s):  
L. ZHANG ◽  
H. SHU ◽  
A. Y. ZHANG ◽  
B. L. LIU ◽  
G. F. XING ◽  
...  

SUMMARYFoxtail millet (Setaria italica (L.) P. Beauv.) is a naturally stress-tolerant plant, a major reserve crop and a model for panicoid grasses. The recent completion of the S. italica genome facilitates identification and characterization of WRKY transcription factor family proteins that are important regulators of major plant processes, including growth, development and stress response. The present study identified 103 WRKY transcription factor-encoding genes in the S. italica genome. The genes were named SiWRKY1–SiWRKY103 according to their order on the chromosomes. A comprehensive expression analysis of SiWRKY genes among four different tissues was performed using publicly available RNA sequencing data. Eighty-four SiWRKY genes were more highly expressed in root tissue than in other tissues and nine genes were only expressed in roots. Additionally, real-time quantitative polymerase chain reaction was performed to comprehensively analyse the expression of all SiWRKY genes in response to dehydration. Results indicated that most SiWRKY genes (over 0.8) were up-regulated by drought stress. In conclusion, genome-wide identification and expression profiling of SiWRKY genes provided a set of candidates for cloning and functional analyses in plants’ response to drought stress.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7291 ◽  
Author(s):  
Lei Wang ◽  
Wenjing Yao ◽  
Yao Sun ◽  
Jiying Wang ◽  
Tingbo Jiang

The WRKY transcription factor family is one of the largest groups of transcription factor in plants, playing important roles in growth, development, and biotic and abiotic stress responses. Many WRKY genes have been cloned from a variety of plant species and their functions have been analyzed. However, the studies on WRKY transcription factors in tree species under abiotic stress are still not well characterized. To understand the effects of the WRKY gene in response to abiotic stress, mRNA abundances of 102 WRKY genes in Populus simonii × P. nigra were identified by RNA sequencing under normal and salt stress conditions. The expression of 23 WRKY genes varied remarkably, in a tissue-specific manner, under salt stress. Since the WRKY56 was one of the genes significantly induced by NaCl treatment, its cDNA fragment containing an open reading frame from P. simonii × P. nigra was then cloned and transferred into Arabidopsis using the floral dip method. Under salt stress, the transgenic Arabidopsis over-expressed the WRKY56 gene, showing an increase in fresh weight, germination rate, proline content, and peroxidase and superoxide dismutase activity, when compared with the wild type. In contrast, transgenic Arabidopsis displayed a decrease in malondialdehyde content under salt stress. Overall, these results indicated that the WRKY56 gene played an important role in regulating salt tolerance in transgenic Arabidopsis.


2018 ◽  
Vol 19 (9) ◽  
pp. 2580 ◽  
Author(s):  
Chang-Tao Wang ◽  
Jing-Na Ru ◽  
Yong-Wei Liu ◽  
Jun-Feng Yang ◽  
Meng Li ◽  
...  

Abiotic stresses restrict the growth and yield of crops. Plants have developed a number of regulatory mechanisms to respond to these stresses. WRKY transcription factors (TFs) are plant-specific transcription factors that play essential roles in multiple plant processes, including abiotic stress response. At present, little information regarding drought-related WRKY genes in maize is available. In this study, we identified a WRKY transcription factor gene from maize, named ZmWRKY40. ZmWRKY40 is a member of WRKY group II, localized in the nucleus of mesophyll protoplasts. Several stress-related transcriptional regulatory elements existed in the promoter region of ZmWRKY40. ZmWRKY40 was induced by drought, high salinity, high temperature, and abscisic acid (ABA). ZmWRKY40 could rapidly respond to drought with peak levels (more than 10-fold) at 1 h after treatment. Overexpression of ZmWRKY40 improved drought tolerance in transgenic Arabidopsis by regulating stress-related genes, and the reactive oxygen species (ROS) content in transgenic lines was reduced by enhancing the activities of peroxide dismutase (POD) and catalase (CAT) under drought stress. According to the results, the present study may provide a candidate gene involved in the drought stress response and a theoretical basis to understand the mechanisms of ZmWRKY40 in response to abiotic stresses in maize.


2014 ◽  
Vol 41 (12) ◽  
pp. 1295 ◽  
Author(s):  
Dhananjay Kumar ◽  
Anjali Kapoor ◽  
Dharmendra Singh ◽  
Lopamudra Satapathy ◽  
Ashwini Kumar Singh ◽  
...  

WRKY proteins are a large family of plant-specific transcription factors associated with regulation of biotic and abiotic stress responses, but how they respond to cereal rust pathogens has never been explored at the molecular level. Full-length cDNA of TaWRKY1B was obtained from a wheat cultivar HD2329 derivative containing leaf rust resistance gene Lr28 based on domain characteristics. The unique feature of this WRKY transcription factor gene was the close proximity of the DNA-binding domain and consensus DNA element W-Box within the open reading frame. Infection with a virulent race of leaf rust fungus resulted in 146-fold induction of the gene in resistant plants, but only 12-fold in the susceptible plants as compared with mock-inoculated controls. Docking models of 74 amino acids DNA-binding domain and 26 bp W-Box element showed that the WRKY domain, located on the β1 strand, only interacts with the W-Box at positions corresponding to W125, R126, K127 and Y128 amino acids. A truncated recombinant protein of 9.0 kD, encompassing the DNA-binding domain also showed binding specificity to the 32 bp W-Box element in electrophoretic mobility shift assays. The protein–DNA ensemble was also characterised using high-resolution atomic force microscopic imaging. The results contribute to an understanding of the molecular structure and function of a previously uncharacterised WRKY transcription factor in wheat that can be manipulated to improve biotic stress tolerance.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Yong-Ling Liao ◽  
Yong-Bao Shen ◽  
Jie Chang ◽  
Wei-Wei Zhang ◽  
Shui-Yuan Cheng ◽  
...  

WRKY transcription factor is involved in multiple life activities including plant growth and development as well as biotic and abiotic responses. We identified 28WRKYgenes from transcriptome data ofGinkgo bilobaaccording to conserved WRKY domains and zinc finger structure and selected three WRKY genes, which areGbWRKY2, GbWRKY16, andGbWRKY21, for expression pattern analysis.GbWRKY2was preferentially expressed in flowers and strongly induced by methyl jasmonate. Here, we cloned the full-length cDNA and genomic DNA ofGbWRKY2. The full-length cDNA ofGbWRKY2was 1,713 bp containing a 1,014 bp open reading frame encoding a polypeptide of 337 amino acids. TheGbWRKY2genomic DNA had one intron and two exons. The deducedGbWRKY2contained one WRKY domain and one zinc finger motif.GbWRKY2was classified into Group II WRKYs. Southern blot analysis revealed thatGbWRKY2was a single copy gene inG. biloba. Manycis-acting elements related to hormone and stress responses were identified in the 1,363 bp-length 5′-flanking sequence ofGbWRKY2, including W-box, ABRE-motif, MYBCOREs, and PYRIMIDINE-boxes, revealing the molecular mechanism of upregulated expression ofGbWRKY2by hormone and stress treatments. Further functional characterizations in transiently transformed tobacco leaves allowed us to identify the region that can be considered as the minimal promoter.


2021 ◽  
Vol 22 (15) ◽  
pp. 8192
Author(s):  
Xiaoshuang Wei ◽  
Hailian Zhou ◽  
Deying Xie ◽  
Jianguo Li ◽  
Mingchong Yang ◽  
...  

Semi-dwarfism is a main agronomic trait in crop breeding. In this study, we performed genome-wide association study (GWAS) and identified a new quantitative trait nucleotide (QTN) for rice shoot length. The peak QTN (C/T) was located in the first coding region of a group III WRKY transcription factor OsWRKY21 (LOC_Os01g60640). Interestingly, further haplotype analysis showed that C/T difference only existed in the indica group but not in the japonica group, resulting in significant differences in plant height among the different indica rice varieties. OsWRKY21 was expressed in embryo, radicle, shoots, leaves, and stems. Most notably, overexpressing OsWRKY21 resulted in the semi-dwarf phenotype, early heading date and short internodes compared to the wild type, while the knockout mutant plants by CRISPR/Cas9 technology yielded the opposite. The overexpressing lines exhibited the decreased length of the cells near sclerenchyma epidermis, accompanied with the lower levels of indole-3-acetic acid (IAA) and gibberellin 3 (GA3), but increased levels of the abscisic acid (ABA) and salicylic acid (SA) in the internodes at heading stage. Moreover, the semi-dwarf phenotype could be fully rescued by exogenous GA3 application at seedling stage. The RNA-seq and qRT-PCR analysis confirmed the differential expression levels of genes in development and the stress responses in rice, including GA metabolism (GA20ox2, GA2ox6, and YABY1) and cell wall biosynthesis (CesA4, 7, and 9) and regulation (MYB103L). These data suggest the essential role of OsWRKY21 in regulation of internode elongation and plant height in rice.


Sign in / Sign up

Export Citation Format

Share Document