scholarly journals Biosynthesis of Metal Nanoparticles via Microbial Enzymes: A Mechanistic Approach

2018 ◽  
Vol 19 (12) ◽  
pp. 4100 ◽  
Author(s):  
Muhammad Ovais ◽  
Ali Khalil ◽  
Muhammad Ayaz ◽  
Irshad Ahmad ◽  
Susheel Nethi ◽  
...  

During the last decade, metal nanoparticles (MtNPs) have gained immense popularity due to their characteristic physicochemical properties, as well as containing antimicrobial, anti-cancer, catalyzing, optical, electronic and magnetic properties. Primarily, these MtNPs have been synthesized through different physical and chemical methods. However, these conventional methods have various drawbacks, such as high energy consumption, high cost and the involvement of toxic chemical substances. Microbial flora has provided an alternative platform for the biological synthesis of MtNPs in an eco-friendly and cost effective way. In this article we have focused on various microorganisms used for the synthesis of different MtNPs. We also have elaborated on the intracellular and extracellular mechanisms of MtNP synthesis in microorganisms, and have highlighted their advantages along with their challenges. Moreover, due to several advantages over chemically synthesized nanoparticles, the microbial MtNPs, with their exclusive and dynamic characteristics, can be used in different sectors like the agriculture, medicine, cosmetics and biotechnology industries in the near future.

Author(s):  
Ankita Chatterjee ◽  
M. Ajantha ◽  
Aishwarya Talekar ◽  
N. Revathyr ◽  
Jayanthi Abraham

Background: Physical and chemical methods of synthesizing metal nanoparticles have been on the focus for the last decade as it has been broadly exploited by researchers. Biological synthesis of metal nanoparticles was found to be easy and economical. The wide applications of titanium dioxide in various fields have drawn attention for biosynthesis of titanium dioxide nanoparticles. Cowpea seeds are easily available and rich in protein as well as high in antioxidant which enhances the good characteristics of the nanoparticles synthesized using it. Methods: In the present investigation the nanoparticles are synthesized using Vigna unguiculata (cowpea) seeds extract. 0.1 mM titanium dioxide was mixed with cowpea seeds extract for the preparation of the nanoparticles. The characterization of nanoparticles was done by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Antibacterial activity of the titanium dioxide nanoparticles was checked against clinical pathogens followed by antioxidant study and cytotoxicity assay by 2, 2- diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay and [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] (MTT) assay respectively. Results: The oval shaped biologically synthesized nanoparticles were effective against most of the clinical pathogens. The observance of peak at 418 cm-1 confirms the synthesis of titanium dioxide nanoparticles. The titanium nanoparticles were highly antioxidant in nature and cytotoxic on MG63 osteosarcoma cell lines. Conclusion: The biological method of preparation of nanoparticles proved to be easy and cost effective. The nanoparticles synthesized can be further used in research for anticancer treatments


2021 ◽  
Vol 09 ◽  
Author(s):  
Sarvat Zafar ◽  
Aiman Zafar ◽  
Fakhra Jabeen ◽  
Miad Ali Siddiq

: Nanotechnology studies the various phenomena of physio-chemical procedures and biological properties for the generation of nanosized particles, and their rising challenges in the various sectors, like medicine, engineering, agriculture, electronic, and environmental studies. The nanosized particles exhibit good anti-microbial, anti-inflammatory, cytotoxic, drug delivery, anti-parasitic, anti-coagulant and catalytic properties because of their unique dimensions with large surface area, chemical stability and higher binding density for the accumulation of various bio-constituents on their surfaces. Biological approaches for the synthesis of silver nanoparticles (AgNPs) have been reviewed because it is an easy and single-step protocol and a viable substitute for the synthetic chemical-based procedures. Physical and chemical approaches for the production of AgNPs are also mentioned herein. Biological synthesis has drawn attention because it is cost-effective, faster, non-pathogenic, environment-friendly, easy to scale-up for large-scale synthesis, and having no demand for usage of high pressure, energy, temperature, or noxious chemical ingredients, and safe for human therapeutic use. Therefore, the collaboration of nanomaterials with bio-green approaches could extend the utilization of biological and cytological properties compatible with AgNPs. In this perspective, there is an immediate need to develop ecofriendly and biocompatible techniques, which strengthen efficacy against microbes and minimize toxicity for human cells. The present study introduces the biological synthesis of silver nanoparticles, and their potential biomedical applications have also been reviewed.


Author(s):  
LATIF MS ◽  
ABBAS S ◽  
KORMIN F ◽  
MUSTAFA MK

The use of metal nanoparticles (MNPs) in various fields is increasing day-by-day leading to a genuine concern about the issues related to their environmental and biological safety. The major approaches for the synthesis of NPs include physical and chemical methods which are expensive and hazardous to health in addition to being toxic to the environment. This review highlights the potential of plant extracts to carry out the synthesis of MNPs with a special emphasis on the role of flavonoids in nanosynthesis. This green and clean approach have been actively utilized in recent years as an alternative to conventional hazardous approaches. It has proved as cost-effective, non-toxic, less time and labor consuming, efficient, and eco-friendly method for the synthesis of MNPs with specific biological actions. This review also focuses on the role of polyphenols, including the flavonoids as bioreductants of metal salts for the synthesis of NPs along with their biomedical applications. Various examples of the MNPs, along with their biological actions, have also been summarized.


2015 ◽  
Vol 1109 ◽  
pp. 30-34 ◽  
Author(s):  
M.K. Nahar ◽  
Zarina Zakaria ◽  
U. Hashim ◽  
Md Fazlul Bari

Nanotechnology is a most promising area that is increasing day by day and play a vital role in environments, biotechnological and biomedical fields. In recent years, the development of effective green chemistry methods for synthesis of various metal nanoparticles has become a main focus of researchers. They have investigated to find out a sustainable technique for production of well-characterized nanoparticles. A variety of chemical and physical methods have been exploited in the synthesis of silver nanoparticles (AgNPs) and these procedures remain expensive, high energy consumption and involve the use of hazardous chemicals. Therefore, there is an essential need to develop environmentally benign and sustainable procedures for synthesis of metallic nanoparticles. Increasing awareness of green chemistry and biological processes has need to develop a rapid, simple, cost-effective and eco-friendly methods. One of the most considered methods is production of nanosilver using plants and plant-derived materials which is the best candidates and suitable for large-scale biosynthesis of silver nanoparticles. Eco-friendly bio-organisms in plant extracts contain proteins, which act as both capping and reducing agents forming of stable and shape-controlled AgNPs. This review describes the recent advancements in the green synthesis of silver nanoparticles by using plants.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Ayesha Naveed Ul Haq ◽  
Akhtar Nadhman ◽  
Ikram Ullah ◽  
Ghulam Mustafa ◽  
Masoom Yasinzai ◽  
...  

Human’s quest for innovation, finding solutions of problems, and upgrading the industrial yield with energy efficient and cost-effective materials has opened the avenues of nanotechnology. Among a variety of nanoparticles, zinc oxide nanoparticles (ZnO) have advantages because of the extraordinary physical and chemical properties. It is one of the cheap materials in cosmetic industry, nanofertilizers, and electrical devices and also a suitable agent for bioimaging and targeted drug and gene delivery and an excellent sensor for detecting ecological pollutants and environmental remediation. Despite inherent toxicity of nanoparticles, synthetic routes are making use of large amount of chemical and stringent reactions conditions that are contributing as environmental contaminants in the form of high energy consumption, heat generation, water consumption, and chemical waste. Further, it is also adding to the innate toxicity of nanoparticles (NPs) that is either entirely ignored or poorly investigated. The current review illustrates a comparison between pollutants and hazards spawned from chemical, physical, and biological methods used for the synthesis of ZnO. Further, the emphasis is on devising eco-friendly techniques for the synthesis of ZnO especially biological methods which are comparatively less hazardous and need to be optimized by controlling the reaction conditions in order to get desired yield and characteristics.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1494
Author(s):  
Arpita Roy ◽  
Amin Elzaki ◽  
Vineet Tirth ◽  
Samih Kajoak ◽  
Hamid Osman ◽  
...  

Over the past few decades, the synthesis and potential applications of nanocatalysts have received great attention from the scientific community. Many well-established methods are extensively utilized for the synthesis of nanocatalysts. However, most conventional physical and chemical methods have some drawbacks, such as the toxicity of precursor materials, the requirement of high-temperature environments, and the high cost of synthesis, which ultimately hinder their fruitful applications in various fields. Bioinspired synthesis is eco-friendly, cost-effective, and requires a low energy/temperature ambient. Various microorganisms such as bacteria, fungi, and algae are used as nano-factories and can provide a novel method for the synthesis of different types of nanocatalysts. The synthesized nanocatalysts can be further utilized in various applications such as the removal of heavy metals, treatment of industrial effluents, fabrication of materials with unique properties, biomedical, and biosensors. This review focuses on the biogenic synthesis of nanocatalysts from various green sources that have been adopted in the past two decades, and their potential applications in different areas. This review is expected to provide a valuable guideline for the biogenic synthesis of nanocatalysts and their concomitant applications in various fields.


2019 ◽  
Vol 2019 (4) ◽  
pp. 7-22
Author(s):  
Georges Bridel ◽  
Zdobyslaw Goraj ◽  
Lukasz Kiszkowiak ◽  
Jean-Georges Brévot ◽  
Jean-Pierre Devaux ◽  
...  

Abstract Advanced jet training still relies on old concepts and solutions that are no longer efficient when considering the current and forthcoming changes in air combat. The cost of those old solutions to develop and maintain combat pilot skills are important, adding even more constraints to the training limitations. The requirement of having a trainer aircraft able to perform also light combat aircraft operational mission is adding unnecessary complexity and cost without any real operational advantages to air combat mission training. Thanks to emerging technologies, the JANUS project will study the feasibility of a brand-new concept of agile manoeuvrable training aircraft and an integrated training system, able to provide a live, virtual and constructive environment. The JANUS concept is based on a lightweight, low-cost, high energy aircraft associated to a ground based Integrated Training System providing simulated and emulated signals, simulated and real opponents, combined with real-time feedback on pilot’s physiological characteristics: traditionally embedded sensors are replaced with emulated signals, simulated opponents are proposed to the pilot, enabling out of sight engagement. JANUS is also providing new cost effective and more realistic solutions for “Red air aircraft” missions, organised in so-called “Aggressor Squadrons”.


2020 ◽  
Vol 26 (40) ◽  
pp. 5188-5204
Author(s):  
Uzair Nagra ◽  
Maryam Shabbir ◽  
Muhammad Zaman ◽  
Asif Mahmood ◽  
Kashif Barkat

Nanosized particles, with a size of less than 100 nm, have a wide variety of applications in various fields of nanotechnology and biotechnology, especially in the pharmaceutical industry. Metal nanoparticles [MNPs] have been synthesized by different chemical and physical procedures. Still, the biological approach or green synthesis [phytosynthesis] is considered as a preferred method due to eco-friendliness, nontoxicity, and cost-effective production. Various plants and plant extracts have been used for the green synthesis of MNPs, including biofabrication of noble metals, metal oxides, and bimetallic combinations. Biomolecules and metabolites present in plant extracts cause the reduction of metal ions into nanosized particles by one-step preparation methods. MNPs have remarkable attractiveness in biomedical applications for their use as potential antioxidant, anticancer and antibacterial agents. The present review offers a comprehensive aspect of MNPs production via top-to-bottom and bottom-to-top approach with considerable emphasis on green technology and their possible biomedical applications. The critical parameters governing the MNPs formation by plant-based synthesis are also highlighted in this review.


2020 ◽  
Vol 14 ◽  
Author(s):  
Abhishek Kumar ◽  
Neeraj Masand ◽  
Vaishali M. Patil

Abstract: Breast cancer is the most common and highly heterogeneous neoplastic disease comprised of several subtypes with distinct molecular etiology and clinical behaviours. The mortality observed over the past few decades and the failure in eradicating the disease is due to the lack of specific etiology, molecular mechanisms involved in initiation and progression of breast cancer. Understanding of the molecular classes of breast cancer may also lead to new biological insights and eventually to better therapies. The promising therapeutic targets and novel anti-cancer approaches emerging from these molecular targets that could be applied clinically in the near future are being highlighted. In addition, this review discusses some of the details of current molecular classification and available chemotherapeutics


Sign in / Sign up

Export Citation Format

Share Document