scholarly journals Biosynthesis, Antimicrobial and Cytotoxic Effects of Titanium Dioxide Nanoparticles Using Vigna unguiculata Seeds

Author(s):  
Ankita Chatterjee ◽  
M. Ajantha ◽  
Aishwarya Talekar ◽  
N. Revathyr ◽  
Jayanthi Abraham

Background: Physical and chemical methods of synthesizing metal nanoparticles have been on the focus for the last decade as it has been broadly exploited by researchers. Biological synthesis of metal nanoparticles was found to be easy and economical. The wide applications of titanium dioxide in various fields have drawn attention for biosynthesis of titanium dioxide nanoparticles. Cowpea seeds are easily available and rich in protein as well as high in antioxidant which enhances the good characteristics of the nanoparticles synthesized using it. Methods: In the present investigation the nanoparticles are synthesized using Vigna unguiculata (cowpea) seeds extract. 0.1 mM titanium dioxide was mixed with cowpea seeds extract for the preparation of the nanoparticles. The characterization of nanoparticles was done by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Antibacterial activity of the titanium dioxide nanoparticles was checked against clinical pathogens followed by antioxidant study and cytotoxicity assay by 2, 2- diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay and [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] (MTT) assay respectively. Results: The oval shaped biologically synthesized nanoparticles were effective against most of the clinical pathogens. The observance of peak at 418 cm-1 confirms the synthesis of titanium dioxide nanoparticles. The titanium nanoparticles were highly antioxidant in nature and cytotoxic on MG63 osteosarcoma cell lines. Conclusion: The biological method of preparation of nanoparticles proved to be easy and cost effective. The nanoparticles synthesized can be further used in research for anticancer treatments

2018 ◽  
Vol 19 (12) ◽  
pp. 4100 ◽  
Author(s):  
Muhammad Ovais ◽  
Ali Khalil ◽  
Muhammad Ayaz ◽  
Irshad Ahmad ◽  
Susheel Nethi ◽  
...  

During the last decade, metal nanoparticles (MtNPs) have gained immense popularity due to their characteristic physicochemical properties, as well as containing antimicrobial, anti-cancer, catalyzing, optical, electronic and magnetic properties. Primarily, these MtNPs have been synthesized through different physical and chemical methods. However, these conventional methods have various drawbacks, such as high energy consumption, high cost and the involvement of toxic chemical substances. Microbial flora has provided an alternative platform for the biological synthesis of MtNPs in an eco-friendly and cost effective way. In this article we have focused on various microorganisms used for the synthesis of different MtNPs. We also have elaborated on the intracellular and extracellular mechanisms of MtNP synthesis in microorganisms, and have highlighted their advantages along with their challenges. Moreover, due to several advantages over chemically synthesized nanoparticles, the microbial MtNPs, with their exclusive and dynamic characteristics, can be used in different sectors like the agriculture, medicine, cosmetics and biotechnology industries in the near future.


2022 ◽  
Vol 11 (1) ◽  
pp. 44-63
Author(s):  
Suresh Sagadevan ◽  
Shahla Imteyaz ◽  
Baranya Murugan ◽  
Jayasingh Anita Lett ◽  
Nanthini Sridewi ◽  
...  

Abstract Metal oxide nanoparticles (NPs) have found a variety of applications in numerous industrial, medical, and environmental fields s, attributable to recent advances in the nanotechnology field. Titanium dioxide nanoparticles (TiO2-NPs) have gained importance as metal oxide NPs due to their potential in various fields, particularly nanomedicine and other biomedicine fields. Several studies have confirmed that NPs produced via the biosynthesis route using natural resources have significant advantages such as fewer toxic contaminants, less subsequent complex chemical synthesis, environmental friendliness, cost-effectiveness, and stability when compared to NPs produced by conventional methods, and its production with controlled shapes and sizes. Therefore, considerable effort is being expended to implement biological synthesis methods with these proven advantages. TiO2-NPs can be made using a variety of biological, chemical, and physical methods. Physicochemical methods are costly, emit high levels of toxic chemicals into the atmosphere, and consume a lot of energy. On the other hand, the biological approach is an environmentally safe, cost-effective, dependable, convenient, and easy way to synthesize TiO2-NPs. In this review, the bio-mediated synthesis, as well as various biomedical applications of TiO2-NPs, were discussed.


2021 ◽  
Vol 09 ◽  
Author(s):  
Sarvat Zafar ◽  
Aiman Zafar ◽  
Fakhra Jabeen ◽  
Miad Ali Siddiq

: Nanotechnology studies the various phenomena of physio-chemical procedures and biological properties for the generation of nanosized particles, and their rising challenges in the various sectors, like medicine, engineering, agriculture, electronic, and environmental studies. The nanosized particles exhibit good anti-microbial, anti-inflammatory, cytotoxic, drug delivery, anti-parasitic, anti-coagulant and catalytic properties because of their unique dimensions with large surface area, chemical stability and higher binding density for the accumulation of various bio-constituents on their surfaces. Biological approaches for the synthesis of silver nanoparticles (AgNPs) have been reviewed because it is an easy and single-step protocol and a viable substitute for the synthetic chemical-based procedures. Physical and chemical approaches for the production of AgNPs are also mentioned herein. Biological synthesis has drawn attention because it is cost-effective, faster, non-pathogenic, environment-friendly, easy to scale-up for large-scale synthesis, and having no demand for usage of high pressure, energy, temperature, or noxious chemical ingredients, and safe for human therapeutic use. Therefore, the collaboration of nanomaterials with bio-green approaches could extend the utilization of biological and cytological properties compatible with AgNPs. In this perspective, there is an immediate need to develop ecofriendly and biocompatible techniques, which strengthen efficacy against microbes and minimize toxicity for human cells. The present study introduces the biological synthesis of silver nanoparticles, and their potential biomedical applications have also been reviewed.


Author(s):  
LATIF MS ◽  
ABBAS S ◽  
KORMIN F ◽  
MUSTAFA MK

The use of metal nanoparticles (MNPs) in various fields is increasing day-by-day leading to a genuine concern about the issues related to their environmental and biological safety. The major approaches for the synthesis of NPs include physical and chemical methods which are expensive and hazardous to health in addition to being toxic to the environment. This review highlights the potential of plant extracts to carry out the synthesis of MNPs with a special emphasis on the role of flavonoids in nanosynthesis. This green and clean approach have been actively utilized in recent years as an alternative to conventional hazardous approaches. It has proved as cost-effective, non-toxic, less time and labor consuming, efficient, and eco-friendly method for the synthesis of MNPs with specific biological actions. This review also focuses on the role of polyphenols, including the flavonoids as bioreductants of metal salts for the synthesis of NPs along with their biomedical applications. Various examples of the MNPs, along with their biological actions, have also been summarized.


Author(s):  
Chen Luo ◽  
Jingting Li ◽  
Jie Xu

Today, nanoparticles have attracted the attention of many researchers due to their special properties as well as their many technological applications. Among these, titanium dioxide nanoparticles have many important applications in various industries due to their excellent optical, electrical and catalytic properties. These applications include use in industrial pigments, as photocatalysts in environmental cleansing, in sunscreens to protect the skin, in photovoltaic applications for solar cells, sensors, in electronic device components, and many more. Two important properties of this material that make it very efficient and useful in life are its photocatalytic and superhydrophobic properties. These two properties are used to purify water and wastewater, eliminate air pollution and buildings, accelerate photochemical reactions such as hydrogen production, fabricate surfaces and layers and self-cleaning glass. The properties of titanium dioxide nanoparticles are strongly dependent on the size of the doped particles, elements or compounds and the surface modifications made on them, which in turn are influenced by the nanoparticle synthesis method. For this reason, methods for the synthesis of titanium dioxide nanoparticles have received much attention today. As the size of the material gets smaller and smaller and reaches the nanoscale, new physical and chemical properties show up. Among the unique properties of nanomaterials, the motion of electrons and holes in semiconductor nanomaterials is dominated by quantum constraint, and the transfer properties of phonons and photons are strongly influenced by the size and geometry of the material. The effective surface area and surface to volume ratio increase with decreasing the material size. High effective levels are achieved by small particles, which will be useful in many 2TiO-based types of equipment in which the interaction of the common surface of the material is important.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 709
Author(s):  
Zohaib Razzaq ◽  
Awais Khalid ◽  
Pervaiz Ahmad ◽  
Muhammad Farooq ◽  
Mayeen Uddin Khandaker ◽  
...  

Titanium dioxide nanoparticles (TiO2-NPs) were synthesized via a facile hydrothermal method. X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FTIR), and Raman spectroscopy were used to study the structure, morphology, chemical composition, and functional group attached to the as-synthesized TiO2-NPs. These NPs were then used to test their efficacy against various microbes and their potency as effective catalysts. TiO2-NPs are found to have the maximum antibacterial activity against Gram-negative bacterial strains rather than Gram-positive bacteria. The photocatalytic activity of the TiO2-NPs was investigated for the photodegradation of 10 ppm bromophenol blue (BPB) dye by using 0.01 g–0.05 g of catalyst. TiO2-NPs exhibited the removal of 95% BPB, respectively, within 180 min. The TiO2-NPs’ antibacterial and catalytic properties suggest that these may be used in environmental remediation as a cost-effective and environmentally friendly wastewater and air treatment material.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1494
Author(s):  
Arpita Roy ◽  
Amin Elzaki ◽  
Vineet Tirth ◽  
Samih Kajoak ◽  
Hamid Osman ◽  
...  

Over the past few decades, the synthesis and potential applications of nanocatalysts have received great attention from the scientific community. Many well-established methods are extensively utilized for the synthesis of nanocatalysts. However, most conventional physical and chemical methods have some drawbacks, such as the toxicity of precursor materials, the requirement of high-temperature environments, and the high cost of synthesis, which ultimately hinder their fruitful applications in various fields. Bioinspired synthesis is eco-friendly, cost-effective, and requires a low energy/temperature ambient. Various microorganisms such as bacteria, fungi, and algae are used as nano-factories and can provide a novel method for the synthesis of different types of nanocatalysts. The synthesized nanocatalysts can be further utilized in various applications such as the removal of heavy metals, treatment of industrial effluents, fabrication of materials with unique properties, biomedical, and biosensors. This review focuses on the biogenic synthesis of nanocatalysts from various green sources that have been adopted in the past two decades, and their potential applications in different areas. This review is expected to provide a valuable guideline for the biogenic synthesis of nanocatalysts and their concomitant applications in various fields.


Sign in / Sign up

Export Citation Format

Share Document