scholarly journals From Ecology to Biotechnology, Study of the Defense Strategies of Algae and Halophytes (from Trapani Saltworks, NW Sicily) with a Focus on Antioxidants and Antimicrobial Properties

2019 ◽  
Vol 20 (4) ◽  
pp. 881 ◽  
Author(s):  
Concetta Messina ◽  
Giuseppe Renda ◽  
Vincenzo Laudicella ◽  
Rozenn Trepos ◽  
Marilyne Fauchon ◽  
...  

This study aimed at the characterization of the antioxidant power of polyphenol extracts (PE) obtained from the algae Cystoseira foeniculacea (CYS) (Phaeophyta) and from the halophyte Halocnemum strobilaceum (HAL), growing in the solar saltworks of western Sicily (Italy), and at the evaluation of their anti-microfouling properties, in order to correlate these activities to defense strategies in extreme environmental conditions. The antioxidant properties were assessed in the PE based on the total antioxidant activity test and the reducing power test; the anti-microfouling properties of the two PE were evaluated by measuring the growth inhibition of marine fish and shellfish pathogen bacteria as well as marine surface fouling bacteria and microalgae exposed to the fractions. Similar polyphenol content (CYS 5.88 ± 0.75 and HAL 6.03 ± 0.25 mg gallic acid equivalents (GAE) g−1 dried weight, DW) and similar reducing power percentage (93.91 ± 4.34 and 90.03 ± 6.19) were recorded for both species, even if they exhibited a different total antioxidant power (measured by the percentage of inhibition of the radical 2,2 diphenyl-1-picrylhydrazyl DPPH), with CYS (79.30) more active than HAL (59.90). Both PE showed anti-microfouling properties, being inhibitors of adhesion and growth of marine fish and shellfish pathogen bacteria (V. aestuarianus, V. carchariae, V. harveyi, P. elyakovii, H. aquamarina) and fouling bacteria (V. natriegens, V. proteolyticus, P. iirgensii, R. litoralis) with minimum inhibitory concentrations comparable to the commercial antifouling products used as a positive control (SEA-NINE™ 211N). Only CYS was a significant inhibitor of the microalgae strains tested, being able to reduce E. gayraliae and C. closterium growth (MIC 10 µg·mL−1) and the adhesion of all three strains tested (E. gayraliae, C. closterium and P. purpureum), suggesting its promise for use as an antifouling (AF) product.

2020 ◽  
Vol 15 (1) ◽  
pp. 1934578X2090139 ◽  
Author(s):  
Jin Shao ◽  
Tong Zhao ◽  
Hui-Ping Ma ◽  
Zheng-Ping Jia ◽  
Lin-Lin Jing

It was reported that 8-hydroxygenistein (8-OHG) was synthesized by methylation, bromination, methoxylation, and demethylation using cheap and readily available biochanin A as raw material. All synthesized products were structurally confirmed by ultra-high-performance liquid chromatography (UHPLC), infrared spectroscopy, mass spectrometry, 1H-nuclear magnetic resonance (NMR), and 13C-NMR. In addition, we examined the antioxidant capacity of 8-OHG using 6 different methods such as 1,1-diphenyl-2-picrylhydrazyl radical scavenging, 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) radical (ABTS) scavenging, nitric oxide radical (NO) scavenging, superoxide radical (O2 −•) scavenging, reducing power assay, and total antioxidant activity using ascorbic acid (VC) as a positive control. Compared with VC, 8-OHG exhibited higher total antioxidant activity and stronger scavenging activity on ABTS, NO, and O2 −•. These results indicate that 8-OHG is an excellent antioxidant agent and may be effective in preventing damage induced by free radical.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2118 ◽  
Author(s):  
Samuel Odeyemi ◽  
John Dewar

Lauridia tetragona (L.f) R.H. Archer is routinely used in traditional medicine; however, its hepatoprotective property is yet to be scientifically proven. To this effect, the hepatoprotective activity of the polyphenolic-rich fractions (PPRFs) was investigated against acetaminophen (APAP) injured HepG2 cells. The ability of the PPRF to scavenge free radicals was tested against 2,2-diphenyl-1-picrylhydrazyl (DPPH), and [2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonicacid)] (ABTS). The ferric ion reducing power (FRAP) was also evaluated as a cell-free antioxidant assay. The hepatoprotective activity was then investigated by observing the effect of PPRFs against APAP-induced reduction in cell viability of HepG2 cells. The concentrations of alanine aminotransferase (AST), aspartate aminotransferase (ALT) and lactate dehydrogenase (LDH) released into the medium were evaluated while the underlying mechanism was further explored through western blot analysis. Thereafter, the isolated PPRFs were identified using UHPLC-QToF-MS. All six fractions of the PPRFs isolated showed significant antioxidant properties that were evident by the effective scavenging of DPPH, ABTS, and higher FRAP. The results indicated that PPRF pretreatments ameliorated APAP-induced hepatocellular injury by significantly inhibiting the leakage of AST, ALT, and LDH into the medium. The most active fractions for hepatoprotection were PPRF4 and PPRF6 with IC50 of 50.243 ± 8.03 and 154.59 ± 1.9 μg/mL, respectively. PPRFs markedly increased activities of liver superoxide dismutase, total antioxidant capacity, and liver glutathione concentration. Both PPRF4 and PPRF6 significantly increased the expression of Nrf2 and translocation. The LC-MS analysis revealed the presence of a wide variety of polyphenolics such as coumarin, ferulic acid, and caffeine among the dominant constituents. In conclusion, this study demonstrates that the isolated PPRFs have potential hepatoprotective activity that may be due to the increased expression of antioxidative genes dependent on Nrf2.


2021 ◽  
Vol 2 (3) ◽  
pp. 6-13
Author(s):  
Oumaima Karai ◽  
Sara Hajib ◽  
Serigne Abdou Khadir Fall ◽  
Salaheddine Boukhssas ◽  
Khadim Dioukhane ◽  
...  

Considering the richness of heterocyclic chemistry, and the diversity of applications it possesses, in the present work we were interested in preparing new polyfunctional α,α-diaminodiesters derived from glycine, via the N-alkylation reaction of methyl 2-azido-2-benzamidoacetate with a series of heterocyclic and non-heterocyclic carboxylic aminoesters, using different bases. The structures of the synthesized molecules were characterized by 1D and 2D NMR spectroscopy, mass spectrometry (MS-ESI) and elemental analysis. Two compounds from this series were isolated as single crystals and their chemical structures were determined by X-ray diffraction. The antioxidant effect of the synthesized compounds was tested in vitro using the free radical scavenging power (DPPH) and reducing power (FRAP) tests. The results show that the different extracts tested have a relatively high antioxidant power compared to the positive control considered, especially for the compound methyl 2-benzamido-2-(2-methoxy-2-oxo-1-phenylethyl)amino)acetate, which showed a very strong antiradical power and reducing power.


2021 ◽  
Vol 59 (4) ◽  
Author(s):  
Barinderjeet Singh Toor ◽  
Amarjeet Kaur ◽  
Param Pal Sahota ◽  
Jaspreet Kaur

Research background. Legumes are superior sources of macro- and micronutrients which can be further enhanced by fermentation. This can assist in addressing the food security concerns. The present study aims to determine the effect of fermentation by Rhizopus oligosporus on nutritional and antinutritional composition of some commonly consumed legumes. Experimental approach. Chickpea (kabuli and desi), pigeon pea, and soybean were fermented with Rhizopus oligosporus (at 34 °C for 52 h), dried at 45 ºC for 16-18 h and milled. Unfermented and fermented flours were evaluated for antioxidant potential, phenolic composition, antinutrients, mineral composition and FTIR spectra. Results and conclusions. Fermentation significantly (p<0.05) enhanced the total phenolic and flavonoid contents, and antioxidant properties (radical scavenging activity, reducing power, ferric reducing antioxidant power and metal chelation) of chickpea kabuli and desi, and soybean. Although fermented pigeon pea exhibited excellent antioxidant properties, the effect of fermentation on such properties was either minimal or insignificant. Additionally, specific phenolics were quantified using HPLC which showed higher concentration of certain compounds such as chlorogenic acid, p-hydroxybenzoic acid, gallic acid and vanillic acid in fermented legumes. Phytic acid in all the fermented legumes reduced (p<0.05), however trypsin inhibition increased (p<0.05). In chickpea kabuli and desi, and pigeon pea, saponins increased (p<0.05) while they decreased in soybean. Tannins enhanced (p<0.05) in chickpea desi, pigeon pea and soybean and reduced (p<0.05) in chickpea kabuli. Furthermore, fermentation enhanced the content as well as estimated bioavailability of minerals. FTIR spectrum of unfermented and fermented legumes showed the presence of several functional groups and modifications in the molecular structure after fermentation. Novelty and scientific contribution. To our knowledge, this is the first study wherein legume (chickpea kabuli and desi, pigeon pea and soybean) fermentation by Rhizopus oligosporus has been assessed for nutritional and antinutritional profile, and FTIR spectra, which concluded that the treatment resulted in an optimal balance of nutrients and antinutrients. The process was established as a potential tool and thus can be proposed in the development of legume based novel functional foods which might help in tackling the concerns of nutritional security.


Author(s):  
PARVEEN S ◽  
MANIKANDAN D ◽  
GOVINDARAJAN S ◽  
PERIASAMY PA

Objective: Our main scope and objectives are to prepare aminoguanidinium salts of amino acids and to characterize them using analytical, IR, and thermal studies, to study the mode of thermal decomposition of aminoguanidinium salts, and to characterize the antioxidants behavior of aminoguanidinium salts. Methods: Elemental analysis for C, H, and N was performed on a Vario ELIII elemental analyzer. The IR spectra were recorded on a JASCO-4100 spectrophotometer as KBr pellets in the range of 400–4000 cm-1. The simultaneous TG-DTA studies were under taken on a PerkinElmer SII thermal analyzer and the curves obtained in air using platinum cups as holders with ~ 3 mg of the samples at the heating rate of 10°C/min. The antioxidant capacities of different salts were estimated according to the literature procedure. Results: Aspartic acid forms bis-aminoguanidinium salt, whereas glutamic acid forms both mono- and bis-aminogunidinium salts. The IR spectral data of the aminogunidinium salts of aforesaid acids show N-N stretching frequencies in the region 1110–1202 cm-1 revealing the presence of aminoguanidinium moiety. Conclusion: The antioxidant properties of these salts were studied using ferric reducing antioxidant power and phosphomolybdenum assay. Results showed significant ferric reducing power which indicated the hydrogen-donating ability of the extract.


2021 ◽  
Vol 33 (9) ◽  
pp. 2237-2243
Author(s):  
Pooja N. Akhand ◽  
Veena Sharma ◽  
Anupam K. Pathak

In present study, the total phenolic, flavonoid, tannin contents and the antioxidant activity of various solvent extracts of Sphaeranthus indicus collected from three different regions of central India were assessed. Plants extracts were prepared using Soxhlation method, while the total phenols, flavonoids and tannins were measured by the spectrophotometric method. DPPH, metal chelating, nitric oxide, superoxide oxide scavenging activity and FRAP, reducing power, total antioxidant assays were also evaluated. The highest phenolic contents 268.22 GAE equivalent, flavonoids 441.33 QE equivalents and tannin content was 120.32 tannic acid equivalents (mg/g) obtained from ethanolic extracts of sample SIEE-1 compared to other two plants extract. Similarly, the highest flavonoid contents was observed in SIAE-1 aqueous extract and lowest in SIAE-2 and SIAE-3. Extract of SIEE-1 possessed maximum antioxidant potentiality and SIAE-2 shown the least antioxidant activity in all assays. It could be concluded that different agroclimatic conditions have effects on the total phenolics, flavonoids, tannin contents and antioxidant potentiality of S. indicus plant.


2019 ◽  
Vol 15 ◽  
Author(s):  
Aleksandra Kładna ◽  
Paweł Berczyński ◽  
Oya Bozdağ Dündar ◽  
Irena Kruk ◽  
Beyza Torun ◽  
...  

Background: Stilbene phytalexis (1,2-diphenyloethylen) and benzamide are beneficial for human health. To increase the stilbene ring activity, a new series of its derivatives containing benzamide structure was synthesized and evaluated for their in vitro antioxidant power. Methods: 1H nuclear magnetic resonance, mass spectroscopy, and chromatographic analyses were used to confirm the successful synthesis. The antioxidant properties were determined by the elimination of , HO , DPPH , ABTS+ radicals, total antioxidant status (TAS) and the ferric reducing antioxidant activities (TAC) measurements. Results: Stilbenebenzamide compounds showed a wide spectrum of antioxidant ability, however their total antioxidant power was weaker than those of butylated hydroxytoluene (BHT), ascorbic acid, and resveratrol. The highest antiradical activity towards and HO was shown by the compounds with structures containing amine group (SBEBA, SBA) ( : 37.7 – 38.0% and 40.8 – 43.5%, HO : 29.8%, 28.7% inhibition, respectively) at1.25 mM concentration. The antiradical power of SBEBA (0.29) in DPPH assay was lower than those of resveratrol (1.83), ascorbic acid (3.63) and BHT (4.09). The TAS values of the synthesized compounds ranged from 152.9±5.3 to 240.2±6.7µM trolox equivalent/gram (TE/g) and were much lower than those of BHT (1304±43.0), reservatrol (1360±29.0) and ascorbic acid (2782±39.7) µM TE/g. Similarly, the TAC values ranging from 29.7±0.9 to 41.5±1.6 µM TE were weaker than that of resveratrol (239.2 ±6.7 µM TE/g). Conclusion: The results suggest that the presence of hydroxyl group in stilbene ring should be considered in further design of stilbenebenzamide compounds to enhance their antioxidant activity.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2533 ◽  
Author(s):  
Thania Alejandra Urrutia-Hernández ◽  
Jorge Arturo Santos-López ◽  
Juana Benedí ◽  
Francisco Jose Sánchez-Muniz ◽  
Claudia Velázquez-González ◽  
...  

The aim of this study was to evaluate the antioxidant and hepatoprotective activity of Croton hypoleucus (EC). The present work reports the first pharmacological, toxicological, and antioxidant studies of EC extract on liver injury. Liver necrosis was induced by thioacetamide (TAA). Five groups were established: Croton Extract (EC), thioacetamide (TAA), Croton extract with thioacetamide (EC + TAA), vitamin E with thioacetamide (VE + TAA) and the positive control and vehicle (CT). For EC and EC + TAA, Wistar rats (n = 8) were intragastrically pre-administered for 4 days with EC (300 mg/kg.day) and on the last day, EC + TAA received a single dose of TAA (400 mg/kg). At 24 h after damage induction, animals were sacrificed. In vitro activity and gene expression of superoxide dismutase (SOD), catalase (Cat), and Nrf2 nuclear factor were measured. The results show that EC has medium antioxidant properties, with an IC50 of 0.63 mg/mL and a ferric-reducing power of 279.8 µM/mg. Additionally, EC reduced hepatic damage markers at 24 h after TAA intoxication; also, it increased SOD and Cat gene expression against TAA by controlling antioxidant defense levels. Our findings demonstrated the hepatoprotective effect of EC by reducing hepatic damage markers and controlling antioxidant defense levels. Further studies are necessary to identify the mechanism of this protection.


Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 438 ◽  
Author(s):  
Federica Moccia ◽  
Sarai Agustin-Salazar ◽  
Luisella Verotta ◽  
Enrico Caneva ◽  
Samuele Giovando ◽  
...  

Largely produced agri-food byproducts represent a sustainable and easily available source of phenolic compounds, such as lignins and tannins, endowed with potent antioxidant properties. We report herein the characterization of the antioxidant properties of nine plant-derived byproducts. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays indicated the superior activity of pomegranate peels and seeds, grape pomace and pecan nut shell. An increase in the antioxidant potency was observed for most of the waste materials following a hydrolytic treatment, with the exception of the condensed tannin-rich pecan nut shell and grape pomace. UV-Vis and HPLC investigation of the soluble fractions coupled with the results from IR analysis and chemical degradation approaches on the whole materials allowed to conclude that the improvement of the antioxidant properties was due not only to removal of non-active components (mainly carbohydrates), but also to structural modifications of the phenolic compounds. Parallel experiments run on natural and bioinspired model phenolic polymers suggested that these structural modifications positively impacted on the antioxidant properties of lignins and hydrolyzable tannins, whereas significant degradation of condensed tannin moieties occurred, likely responsible for the lowering of the reducing power observed for grape pomace and pecan nut shell. These results open new perspectives toward the exploitation and manipulation of agri-food byproducts for application as antioxidant additives in functional materials.


2020 ◽  
Vol 10 (17) ◽  
pp. 5731
Author(s):  
Selma Mlinarić ◽  
Vlatka Gvozdić ◽  
Ana Vuković ◽  
Martina Varga ◽  
Ivan Vlašiček ◽  
...  

Chia (Salvia hispanica L.) is a one-year plant known as a source of nutrients that can be consumed in the diet in the form of seeds or sprouts. The purpose of this study is to investigate the effect of illumination for 24 and 48 h on dark-grown chia microgreens. Total antioxidant capacity was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) assays, along with the total phenolics, ascorbic acid and cellulose content, and chlorophyll and carotenoid concentrations. Fourier transform infrared spectroscopy (FTIR) was used to evaluate the biochemical composition and elucidate the changes in compound structures between dark-grown and illuminated chia microgreens. Analysis of the results showed that illumination significantly increased the content of all measured bioactive compounds as well as antioxidative capacity, especially 48 h after exposure to light. FTIR analyses supported structural and molecular changes in chia microgreens grown under different light regimes. Our results suggest that illumination has a positive effect on the antioxidant potential of chia microgreens, which may present a valuable addition to the human diet.


Sign in / Sign up

Export Citation Format

Share Document