scholarly journals In Vitro Anti-proliferative Activity and Mechanism of Action of Anemone nemorosa

2019 ◽  
Vol 20 (5) ◽  
pp. 1217 ◽  
Author(s):  
Bresler Swanepoel ◽  
Luanne Venables ◽  
Octavian Olaru ◽  
George Nitulescu ◽  
Maryna van de Venter

Anemone nemorosa is part of the Ranunculaceae genus Anemone (order Ranunculales) which comprises more than 150 species. Various parts of the plant have been used for the treatment of numerous medical conditions such as headaches, tertian agues, rheumatic gout, leprosy, lethargy, eye inflammation as well as malignant and corroding ulcers. The Anemone plants have been found to contain various medicinal compounds with anti-cancer, immunomodulatory, anti-inflammatory, anti-oxidant and anti-microbial activities. To date there has been no reported evidence of its use in the treatment of cancer. However, due to the reported abundance of saponins which usually exert anti-cancer activity via cell cycle arrest and the induction of apoptosis, we investigated the mode of cell death induced by an aqueous A. nemorosa extract by using HeLa cervical cancer cells. Cisplatin was used as a positive control. With a 50% inhibitory concentration (IC50) of 20.33 ± 2.480 µg/mL, treatment with A. nemorosa yielded a delay in the early mitosis phase of the cell cycle. Apoptosis was confirmed through fluorescent staining with annexin V-FITC. Apoptosis was more evident with A. nemorosa treatment compared to the positive control after 24 and 48 h. Tetramethylrhodamine ethyl ester staining showed a decrease in mitochondrial membrane potential at 24 and 48 h. The results obtained imply that A. nemorosa may have potential anti-proliferative properties.

2020 ◽  
Vol 16 (3) ◽  
pp. 340-349
Author(s):  
Ebrahim S. Moghadam ◽  
Farhad Saravani ◽  
Ernest Hamel ◽  
Zahra Shahsavari ◽  
Mohsen Alipour ◽  
...  

Objective: Several anti-tubulin agents were introduced for the cancer treatment so far. Despite successes in the treatment of cancer, these agents cause toxic side effects, including peripheral neuropathy. Comparing anti-tubulin agents, indibulin seemed to cause minimal peripheral neuropathy, but its poor aqueous solubility and other potential clinical problems have led to its remaining in a preclinical stage. Methods: Herein, indibulin analogues were synthesized and evaluated for their in vitro anti-cancer activity using MTT assay (on the MCF-7, T47-D, MDA-MB231 and NIH-3T3 cell lines), annexin V/PI staining assay, cell cycle analysis, anti-tubulin assay and caspase 3/7 activation assay. Results: One of the compounds, 4a, showed good anti-proliferative activity against MCF-7 cells (IC50: 7.5 μM) and low toxicity on a normal cell line (IC50 > 100 μM). All of the tested compounds showed lower cytotoxicity on normal cell line in comparison to reference compound, indibulin. In the annexin V/PI staining assay, induction of apoptosis in the MCF-7 cell line was observed. Cell cycle analysis illustrated an increasing proportion of cells in the sub-G-1 phase, consistent with an increasing proportion of apoptotic cells. No increase in G2/M cells was observed, consistent with the absence of anti-tubulin activity. A caspase 3/7 assay protocol showed that apoptosis induction by more potent compounds was due to activation of caspase 3. Conclusion: Newly synthesized compounds exerted acceptable anticancer activity and further investigation of current scaffold would be beneficial.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2474-2474
Author(s):  
Piotr Smolewski ◽  
Agnieszka Janus ◽  
Barbara Cebula ◽  
Anna Linke ◽  
Krzysztof Jamroziak ◽  
...  

Abstract Background: Rapamycin (RAPA) is an inhibitor of mTOR kinase pathway. In vitro low doses of this agent induce cell cycle arrest in G1 phase, whereas higher concentrations of RAPA exert proapoptotic effects. Aim: We assessed cytotoxicity of RAPA alone or in combination with cytarabine (cytosine arabinoside, ARA-C) in acute myeloblastic leukemia (AML) cells and in normal lymphocytes obtained from 10 healthy volunteers. Methods: AML cells (in vitro HL-60 cell line and ex vivo leukemic cells) and phytohemaglutynin (PHA)-stimulated normal lymphocytes were treated for 24 – 48 h with 1 ng/ml RAPA alone or in combination with 50 nM cytarabine (Ara-C). Moreover, cells was pre-incubated with RAPA for 24 h and then Ara-C was added for the next 24 h. Untreated cultures and those treated with RAPA, Ara-C or PHA alone served as respective controls. The proapoptotic effect was assessed by Annexin V assay and presented as a percentage of Annexin-V-positive cells (apoptotic index; AI). Cell cycle was analyzed by DNA distribution in propydium iodide/RN-ase stained cells. Cyclin D3, A and E expression was also measured using flow cytometry. Results: Median AI induced in HL-60 cells after 24 h treatment with RAPA+Ara-C (30.1%) was significantly higher than induced by RAPA (7.2%) or Ara-C (18.5%) alone (p=0.002 and p=0.03, respectively). The RAPA+Ara-C combination exerted additive effect (combination index 0.87) in that model. Additional 24 hour pretreatment with RAPA further increased apoptosis (median AI 41.5%, vs. 10.9% after 48 h-RAPA alone). In contrast to leukemic cells, pretreatment of normal PHA-stimulated lymphocytes with RAPA caused their G1 phase cell cycle arrest, with significant decrease in cyclin D3 expression (vs. untreated cells - p<0.001). This resulted in prevention of Ara-C-induced cytotoxicity in healthy lymphocytes, when Ara-C was added for another 24 h. Importantly, that protective effect was reversible when RAPA-treated lymphocytes were rinsed and then cultured in fresh, RAPA-free medium for the next 24 h. In another set of experiments, cells from 12 de novo AML patients were treated with RAPA and Ara-C in above concentrations and time settings. RAPA and Ara-C were administrated to isolated peripheral blood mononuclear cells (PBMC). PBMC were immunophenotyped before and after treatment. Leukemic blasts were marked for individually chosen antigen, most characteristic for leukemic clone in particular patient. Normal CD3+ lymphocytes were also detected. Finally, Annexin V staining was performed. Based on that simultaneous three-color staining the proapoptotic effects of treatment could be measured by flow cytometry in both leukemic blasts and normal CD3+ cells. Thus, we found that pretreatment with RAPA protected majority of CD3+ cells (median of alive cells 85.5%) from Ara-C-induced apoptosis, whereas the leukemic blasts AI was higher than in samples treated with Ara-C. After Ara-C alone CD3+ rate decreased significantly (median 35.1%). Conclusions: Pretreatment with RAPA enhances cytotoxic effect of Ara-C on leukemic cells, but not on healthy lymphocytes. The phenomenon is probably due to reversible arrest of healthy cells in G1 phase of cell cycle by low doses of RAPA, what causes their transient resistance to proapoptotic action of cytostatic drugs. In contrast, the same RAPA doses selectively sensitizes leukemic cells to cytostatics. This suggests, that inhibition of mTOR kinase prior to cytostatics administration may result in selective anti-tumor treatment, with protection of normal cells.


2013 ◽  
Vol 41 (03) ◽  
pp. 615-628 ◽  
Author(s):  
Zengtao Xu ◽  
Guosheng Wu ◽  
Xu Wei ◽  
Xiuping Chen ◽  
Yitao Wang ◽  
...  

Celastrol is one of the principal active ingredients of Tripterygium wilfordii Hook.f., a toxic Chinese medical herb traditionally prescribed for controlling pain and inhibiting inflammation in various chronic inflammatory diseases, including rheumatoid arthritis (RA). Resistance to apoptosis of fibroblast-like synoviocytes is considered a major characteristic of RA. In this study, we test celastrol's cytotoxic effect and potential mechanisms in human rheumatoid synovial fibroblasts (RA-FLS). In the cytotoxic assay, we found that celastrol dose-dependently decreased RA-FLS viability and increased LDH release. The apoptotic nuclear morphology was observed after celastrol treatment as determined by DAPI fluorescence staining. Flow cytometry analysis with PI and Annexin V revealed that celastrol induced RA-FLS cell cycle arrest in the G2/M phase and apoptosis. Furthermore, celastrol dramatically increased expression of Bax/Bcl-2, proteolytic cleavage of Caspase-3, -9, PARP, and decreased expression of FasR. In addition, celastrol treatment resulted in DNA damage. Collectively, we concluded that celastrol inhibits RA-FLS proliferation by inducing DNA damage, cell cycle arrest, and apoptosis in vitro, which might provide data for its application in RA treatment.


2018 ◽  
Vol 47 (6) ◽  
pp. 1993-2008 ◽  
Author(s):  
Tushar S. Basu Baul ◽  
Imliwati Longkumer ◽  
Andrew Duthie ◽  
Priya Singh ◽  
Biplob Koch ◽  
...  

Newly synthesized triphenylstannyl 4-((arylimino)methyl)benzoates show enhanced cytotoxicity and excellent selectivity in vitro towards human cervical cancer cells.


2016 ◽  
Vol 64 (4) ◽  
pp. 957.1-957
Author(s):  
GC Osuji ◽  
M Reyes ◽  
NN Drever ◽  
TJ Kuehl ◽  
MN Uddin ◽  
...  

ObjectivePreeclampsia (preE) is a hypertensive disorder of pregnancy. Cardiotonic steroids (CTS) are endogenous inhibitors of Na+/K+ ATPase and at least one CTS, marinobufagenin (MBG), is elevated in preE prior to the development of the syndrome in rats with preE. MBG and ouabain impair cytotrophoblast (CTB) function, which is critical for placental development.Study DesignWe evaluated the effect of a CTS, cinobufotalin (CINO), on CTB cell function in vitro.ResultsCINO at ≥1 nM inhibited CTB cell proliferation, migration, and invasion (p<0.05) but had no effect on cell viability. There was a higher (p<0.05) percentage of G0/G1 phase cells in groups treated with CINO at ≥1 nM. CINO caused an increase in stress signaling p38 MAPK and a positive annexin-V staining in CTB cells, indicating the activation of apoptotic signaling. However, the CINO induced apoptotic signaling was prevented by p38 inhibition.ConclusionThis data demonstrates that CINO impairs CTB cell function via cell cycle arrest and apoptotic signaling.


2018 ◽  
Vol 19 (9) ◽  
pp. 2739 ◽  
Author(s):  
Sang-A Kim ◽  
Ok-Hwa Kang ◽  
Dong-Yeul Kwon

Cryptotanshinone (CTT) is a natural product and a quinoid diterpene isolated from the root of the Asian medicinal plant, Salvia miltiorrhizabunge. Notably, CTT has a variety of anti-cancer actions, including the activation of apoptosis, anti-proliferation, and reduction in angiogenesis. We further investigated the anti-cancer effects of CTT using MTS, LDH, and Annexin V assay, DAPI staining, cell cycle arrest, and Western blot analysis in NSCLC cell lines. NSCLC cells treated with CTT reduced cell growth through PI3K/Akt/GSK3β pathway inhibition, G0/G1 cell cycle arrest, and the activation of apoptosis. CTT induced an increase of caspase-3, caspase-9, poly-ADP-ribose polymerase (PARP), and Bax, as well as inhibition of Bcl-2, survivin, and cellular-inhibitor of apoptosis protein 1 and 2 (cIAP-1 and -2). It also induced G0/G1 phase cell cycle arrest by decreasing the expression of the cyclin A, cyclin D, cyclin E, Cdk 2, and Cdk 4. These results highlight anti-proliferation the latent of CTT as natural therapeutic agent for NSCLC. Therefore, we investigated the possibility of CTT as an anti-cancer agent by comparing with GF, which is a representative anti-cancer drug.


2019 ◽  
Vol 6 (4) ◽  
pp. 58-68
Author(s):  
T. I. Fetisov ◽  
K. I. Kirsanov ◽  
A. A. Borunova ◽  
M. N. Zatsepina ◽  
E. A. Lesovaya ◽  
...  

Background. Curaxin CBL0137 is a novel non-genotoxic compound with anti-cancer activity based on CBL0137 ability of non-covalent interaction with DNA causing histone chaperone FACT relocation. Anti-cancer activity of this drug was demonstrated previously on the wide panel of solid cancer models in vitro and in vivo.Objectives. Estimation of anticancer effects of CBL0137 on the acute myeloblastic leukemia cells (THP-1) and acute lymphoblastic leukemia (CCRF-CEM).Materials and methods. CBL0137 cytotoxicity was analyzed using the MTT test, the effects on the cell cycle and the induction of apoptosis was assessed by flow cytometry, the activity of signaling pathways in cells treated with CBL0137 was determined by real-time polymerase chain reaction.Results. Cell treatment with CBL0137 led to cell cycle arrest and apoptosis induction. In the study of CBL0137 effect on target gene clusters of 10 signal transduction pathways involved in the pathogenesis of acute leukemia we have showed that CBL0137 inhibited the expression of down-stream genes of WNT and Hedgehog signaling in both cell lines. In THP-1 cells we also observed the inhibition of the expression of PPARγ target and hypoxia-activated genes. In CCRF-CEM cells CBL0137 also induced the expression of Notch signaling target genes.Conclusion. The antitumor activity of CBL0137 was demonstrated on acute leukemia cell cultures, the drug possesses cytotoxicity, causes cell cycle arrest and activation of apoptosis. Significant changes in the expression of efferent gene clusters of several signaling pathways were observed in the cells treated with CBL0137.


2020 ◽  
Vol 10 (9) ◽  
pp. 3058
Author(s):  
Wei-Cheng Shiao ◽  
Chia-Hung Kuo ◽  
Yung-Hsiang Tsai ◽  
Shu-Ling Hsieh ◽  
Ai-Wei Kuan ◽  
...  

Fucoidans constitute a family of fucose-rich sulfated polysaccharides, which possess multiple characteristics, including antioxidant, antitumor, antivirus, anticoagulant, and anti-inflammatory properties. In addition, the incidence of colon cancer has risen rapidly worldwide. In the present study, fucoidan extracts were extracted from the Sargassum glaucescens (SG) pretreated by compressional-puffing, and four fucoidans (SG1-SG4) were obtained with different puffing conditions. It was found that SG4 possessed the highest extraction yield, relatively high cytotoxicity against human colon carcinoma HT-29 cells, and relatively low cytotoxicity to normal cells, as compared to the other extracted fucoidans. Moreover, SG4 caused cell cycle arrest of HT-29 cells at sub-G1, S, and G2/M phases. SG4 also induced HT-29 cellular apoptosis, as evidenced by the loss of mitochondrial membrane potential (MMP), increased cytochrome c release, activation of caspase-9 and -3, increased DNA fragmentation, and increased early and late apoptotic cells visualized by annexin V/propidium iodide (PI) assay. Additional biological experiments revealed that the Akt/mammalian target of rapamycin (mTOR)/S6 pathway is involved in SG4-induced apoptosis of HT-29 cells. These results clearly indicate that SG4 showed anti-colon cancer potential via the induction of cell cycle arrest and apoptosis, and thus may have a possible application as an adjuvant therapeutic agent in colon cancer treatment.


2020 ◽  
Vol 21 (11) ◽  
pp. 3950 ◽  
Author(s):  
Adam Wawrzynkiewicz ◽  
Wioletta Rozpedek-Kaminska ◽  
Grzegorz Galita ◽  
Monika Lukomska-Szymanska ◽  
Barbara Lapinska ◽  
...  

Dental universal adhesives are considered an useful tool in modern dentistry as they can be used in different etching techniques, allow for simplified protocol and provide sufficient bond strength. However, there is still no consensus as to their toxicity towards pulp. Thus, the present study aimed to evaluate the cytotoxicity and genotoxicity of three universal adhesives: OptiBond Universal, Prime&Bond Universal and Adhese in an in vitro experimental model, monocyte/macrophage cell line SC (ATCC CRL-9855). The cytotoxicity was measured by means of XTT assay, whereas the genotoxicity (comet assay) was evaluated based on the percentage of DNA present in the comet tail. Furthermore, the ability of the adhesives to induce apoptosis was analyzed using flow cytometry (FC) with the FITC annexin V/propidium iodide (PI) double staining. The analysis of the cell cycle progression was performed with FC using PI staining. OptiBond Universal presented significant, while Prime&Bond Universal and Adhese Universal had minimal cytotoxicity and genotoxicity towards human SC cells. Moreover, only OptiBond Universal increased the level of apoptosis in SC cell line. None of the adhesives showed significant cell cycle arrest, as revealed by FC analysis. Due to substantial differences in toxicity in in vitro studies of dental adhesives, there is a great need for further research in order to establish more reliable test protocols allowing for standardized methodology.


Sign in / Sign up

Export Citation Format

Share Document