scholarly journals 1,2,4-Oxadiazole/2-Imidazoline Hybrids: Multi-target-directed Compounds for the Treatment of Infectious Diseases and Cancer

2019 ◽  
Vol 20 (7) ◽  
pp. 1699 ◽  
Author(s):  
Anton Shetnev ◽  
Sergey Baykov ◽  
Stanislav Kalinin ◽  
Alexandra Belova ◽  
Vladimir Sharoyko ◽  
...  

Replacement of amide moiety with the 1,2,4-oxadiazole core in the scaffold of recently reported efflux pump inhibitors afforded a novel series of oxadiazole/2-imidazoline hybrids. The latter compounds exhibited promising antibacterial activity on both Gram-positive (Staphylococcus aureus, Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonas fluorescens) strains. Furthermore, selected compounds markedly inhibited the growth of certain drug-resistant bacteria. Additionally, the study revealed the antiproliferative activity of several antibacterial frontrunners against pancreas ductal adenocarcinoma (PANC-1) cell line, as well as their type-selective monoamine oxidase (MAO) inhibitory profile.

Author(s):  
Qi Xie ◽  
Yin Wang ◽  
Mengmeng Zhang ◽  
Shujia Wu ◽  
Wei Wei ◽  
...  

Human neutrophil peptide-1 (HNP-1) is a promising antibiotic candidate, but its clinical application has been hampered by the difficulty of mass production and an inadequate understanding of its bactericidal mechanisms. In this study, we demonstrated that recombinant protein expression combined with ultrafiltration may be a simple and cost-effective solution to HNP-1 production.


2020 ◽  
Vol 64 (12) ◽  
Author(s):  
Jitender Yadav ◽  
Sana Ismaeel ◽  
Ayub Qadri

ABSTRACT Polymyxin B, used to treat infections caused by antibiotic-resistant Gram-negative bacteria, produces nephrotoxicity at its current dosage. We show that a combination of nonbactericidal concentration of this drug and lysophosphatidylcholine (LPC) potently inhibits growth of Salmonella and at least two other Gram-negative bacteria in vitro. This combination makes bacterial membrane porous and causes degradation of DnaK, the regulator of protein folding. Polymyxin B-LPC combination may be an effective and safer regimen against drug-resistant bacteria.


2021 ◽  
Author(s):  
Xiangwen Liao ◽  
lianghong liu ◽  
yanhui Tan ◽  
guijuan jiang ◽  
haihong fang ◽  
...  

New effective antimicrobial agents with novel mode of action are urgently need due to the continued emergence of drug-resistant bacteria. Here, three ruthenium complexes functionalized with benzothiophene: [Ru(phen)2(BTPIP)](ClO4)2 (Ru(II)-1), [Ru(dmp)2(BTPIP)](ClO4)2...


2019 ◽  
Vol 12 (2) ◽  
pp. 91
Author(s):  
Laumaillé ◽  
Dassonville-Klimpt ◽  
Peltier ◽  
Mullié ◽  
Andréjak ◽  
...  

The lack of antibiotics with a novel mode of action associated with the spread of drug resistant bacteria make the fight against infectious diseases particularly challenging. A quinoline core is found in several anti-infectious drugs, such as mefloquine and bedaquiline. Two main objectives were set in this work. Firstly, we evaluated the anti-mycobacterial properties of the previous quinolines 3, which have been identified as good candidates against ESKAPEE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli) bacteria. Secondly, a new series 4 was designed and assessed against the same bacteria strains, taking the pair of enantiomers 3m/3n as the lead. More than twenty compounds 4 were prepared through a five-step asymmetric synthesis with good enantiomeric excesses (>90%). Interestingly, all compounds of series 3 were efficient on M. avium with MIC = 2–16 µg/mL, while series 4 was less active. Both series 3 and 4 were generally more active than mefloquine against the ESKAPEE bacteria. The quinolines 4 were either active against Gram-positive bacteria (MIC ≤ 4 µg/mL for 4c–4h and 4k/4l) or E. coli (MIC = 32–64 µg/mL for 4q–4v) according to the global lipophilicity of these compounds.


2021 ◽  
Vol 1 (1) ◽  
pp. 8-15
Author(s):  
Pratiksha Paudel ◽  
Sunita Shrestha ◽  
Sushmita Poudel ◽  
Bishnu Raj Tiwari

Introduction: Pus is an exudate, present at the site of inflammation occurring during bacterial, viral or fungal infection and is formed by pyogenic bacteria. Objective: To study the multi-drug resistant bacteria including phenotypic detection of MβL activity of Pseudomonas aeruginosa in pus isolates. Methods: This was hospital based cross-sectional study in which 179 samples of pus was collected from any site of the body either by using swab or aspirated by using syringe and cultured in respective hospitals. Thus, obtained isolates were preserved and were transported to the laboratory for further processing. Results: Out of 162 pus isolated, 67(42.0%) were Methecillin resistant Staphylococcus aureus (MRSA), 14(8%) were Methicillin sensitive Staphylococcus aureus (MSSA), 21(13.0%) were Klebsiella spp, 19(11.7%) were Escherichia coli, 14 (8.6%) were Pseudomonas aeruginosa, 10(6.2%) were Acinetobacter spp, 5(3.1%) were Streptococcus spp, 4(2.5%) were Enterococci ,3(1.9%) were Enterobacter spp, 2(1.2%) were Coagulase negative S. aureus, 1(0.6%) were Proteus vulgaris, and1(0.6%) were Citrobacter spp. Antibiogram of Gram positive cocci revealed that they showed susceptibility towards vancomycin, clindamycin, gentamycin, amikacin. Similarly, Gram negative bacilli showed good response towards gentamycin, amikacin, nitrofurantoin, colistin. Out of 162 isolates, 102(62.96%) were Multi-Drug Resistant (MDR) and 60 (37.04%) were Non-MDR. Out of 14 (8.6%) Pseudomonas aeruginosa isolates, 8(57.1%) were Imepenem resistant and among imepenem resistant, only 3(37.5%) of them showed MβL production activity. Conclusion: This study showed that Gram negative bacteria were highly resistant to antibiotics. Staphylococcus aureus was found to be more predominant bacteria in forming pus. Antibiotics used in the infections related to pus are being more resistant.


2020 ◽  
Vol 15 (6) ◽  
pp. 665-679
Author(s):  
Alok K. Srivastava ◽  
Lokesh K. Pandey

Background: [1, 3, 4]oxadiazolenone core containing chalcones and nucleosides were synthesized by Claisen-Schmidt condensation of a variety of benzaldehyde derivatives, obtained from oxidation of substituted 5-(3/6 substituted-4-Methylphenyl)-1, 3, 4-oxadiazole-2(3H)-one and various substituted acetophenone. The resultant chalcones were coupled with penta-O-acetylglucopyranose followed by deacetylation to get [1, 3, 4] oxadiazolenone core containing chalcones and nucleosides. Various analytical techniques viz IR, NMR, LC-MS and elemental analysis were used to confirm the structure of the synthesised compounds.The compounds were targeted against Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and Aspergillus flavus, Aspergillus niger and Fusarium oxysporum for antifungal activity. Methods: A mixture of Acid hydrazides (3.0 mmol) and N, Nʹ- carbonyl diimidazole (3.3 mmol) in 15 mL of dioxane was refluxed to afford substituted [1, 3, 4]-oxadiazole-2(3H)-one. The resulted [1, 3, 4]- oxadiazole-2(3H)-one (1.42 mmol) was oxidized with Chromyl chloride (1.5 mL) in 20 mL of carbon tetra chloride and condensed with acetophenones (1.42 mmol) to get chalcones 4. The equimolar ratio of obtained chalcones 4 and β -D-1,2,3,4,6- penta-O-acetylglucopyranose in presence of iodine was refluxed to get nucleosides 5. The [1, 3, 4] oxadiazolenone core containing chalcones 4 and nucleosides 5 were tested to determined minimum inhibitory concentration (MIC) value with the experimental procedure of Benson using disc-diffusion method. All compounds were tested at concentration of 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.62 mg/mL, 0.31 mg/mL and 0.15 mg/mL for antifungal activity against three strains of pathogenic fungi Aspergillus flavus (A. flavus), Aspergillus niger (A. niger) and Fusarium oxysporum (F. oxysporum) and for antibacterial activity against Gram-negative bacterium: Escherichia coli (E. coli), and two Gram-positive bacteria: Staphylococcus aureus (S. aureus) and Bacillus subtilis(B. subtilis). Result: The chalcones 4 and nucleosides 5 were screened for antibacterial activity against E. coli, S. aureus and B. subtilis whereas antifungal activity against A. flavus, A. niger and F. oxysporum. Compounds 4a-t showed good antibacterial activity whereas compounds 5a-t containing glucose moiety showed better activity against fungi. The glucose moiety of compounds 5 helps to enter into the cell wall of fungi and control the cell growth. Conclusion: Chalcones 4 and nucleosides 5 incorporating [1, 3, 4] oxadiazolenone core were synthesized and characterized by various spectral techniques and elemental analysis. These compounds were evaluated for their antifungal activity against three fungi; viz. A. flavus, A. niger and F. oxysporum. In addition to this, synthesized compounds were evaluated for their antibacterial activity against gram negative bacteria E. Coli and gram positive bacteria S. aureus, B. subtilis. Compounds 4a-t showed good antibacterial activity whereas 5a-t showed better activity against fungi.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 321
Author(s):  
Shekh Sabir ◽  
Tsz Tin Yu ◽  
Rajesh Kuppusamy ◽  
Basmah Almohaywi ◽  
George Iskander ◽  
...  

The quorum sensing (QS) system in multi-drug-resistant bacteria such as P. aeruginosa is primarily responsible for the development of antibiotic resistance and is considered an attractive target for antimicrobial drug discovery. In this study, we synthesised a series of novel selenourea and thiourea-containing dihydropyrrol-2-one (DHP) analogues as LasR antagonists. The selenium DHP derivatives displayed significantly better quorum-sensing inhibition (QSI) activities than the corresponding sulphur analogues. The most potent analogue 3e efficiently inhibited the las QS system by 81% at 125 µM and 53% at 31 µM. Additionally, all the compounds were screened for their minimum inhibitory concentration (MIC) against the Gram-positive bacterium S. aureus, and interestingly, only the selenium analogues showed antibacterial activity, with 3c and 3e being the most potent with a MIC of 15.6 µM.


Author(s):  
Jyoti Chandola ◽  
Pooja Singh ◽  
Rishabh Garg ◽  
Narotam Sharma

The scientific study of this research has been focused on synergistic antibacterial activity of two weed plants, Lantana camara L., Parthenium hysterophorus L. alongwith two medicinal plants, Cannabis sativa L., Justicia adhatoda L. against multi- drug resistant (MDR) bacteria. Dried leaf powders of the plants were extracted using air-dried method followed by the ethanol- solvent extraction method for the crude extract of the leaves. The crude extracts were tested for antibacterial activity against three MDR bacteria, that is, one Gram positive bacteria- Staphylococcus aureus and two Gram negative bacteria- Escherichia coli and Proteus mirabilis. Out of 18 antibiotics tested against procured bacteria, Staphylococcus aureus was resistant to 10 out of 10 tested antibiotics, Escherichia coli was resistant to 4 out of 12 tested antibiotics and Proteus mirabilis was resistant to 9 out of 10 tested antibiotics. The tested weed plants and the medicinal plants when combined together showed more zone of inhibition against multidrug resistant bacteria ( Two combinations of phytochemicals Lantana camara, Cannabis sativa and Lantana camara, Cannabis sativa, Justicia adhatoda, Parthenium hysterophorus showed maximum zones of inhibition, that is, 30 mm) as compared to when these plants were tested solitarily, showing pronounced antibacterial activity. These findings showed that the antibacterial activity enhanced when they were combined together and this potential could be used against various infectious diseases with more research and modification in this area. Weed plants also holds as much importance as the medicinal plants although not to that extent, but they clearly inhibit the growth of bacteria and this property of weeds along with the medicinal plants holds a promising future in treating many diseases caused by multi-drug resistant bacteria on the pharmaceutical level.


2020 ◽  
Vol 9 (4) ◽  
pp. 1569-1577

The quorum sensing (QS) mechanism has become a viable research strategy for the discovery of plant-derived anti-virulent agents to control drug-resistant bacteria. The increasing incidences of drug-resistant bacteria and the effort to curb it necessitate this study. We investigated the QS inhibitory potential of Centaurea praecox extracts on Chromobacterium violaceum (CV), antibacterial activity, and determination of chemical composition using GC-MS. C. praecox was subjected to sequential extraction using hexane (HEX), dichloromethane (DCM), ethyl acetate (EA), ethanol (ET), and aqueous (AQ) solvents. The extracts were subsequently evaluated for antibacterial activity using disc diffusion and QS violacein inhibition using spectrophotometry. The antibacterial effects of the extracts were moderate on gram-positive bacteria at 4 mg/mL in the order: HEX >EA >DCM >ET =AQ. However, the DCM extract demonstrated the most effective violacein inhibition of ≥80% at 0.3 mg/mL. QS violacein inhibitions were generally found to be concentration-dependent in the order: DCM >EA >HEX >ET =AQ with efficacies of ≥ 90% inhibition at ≥ 0.6 mg/mL. GC-MS analysis on the most potent DCM extract revealed N-vinylmethanimine, N-ethyl formamide, and propanamide among components identified. We concluded that C. praecox DCM extract contains bioactive chemicals as QS inhibitors and potential anti-virulent agents capable of combating the pathogenicity of drug-resistant bacteria in vivo.


Sign in / Sign up

Export Citation Format

Share Document