scholarly journals Microbial Transglutaminase as a Tool to Improve the Features of Hydrocolloid-Based Bioplastics

2020 ◽  
Vol 21 (10) ◽  
pp. 3656 ◽  
Author(s):  
C. Valeria L. Giosafatto ◽  
Antonio Fusco ◽  
Asmaa Al-Asmar ◽  
Loredana Mariniello

Several proteins from animal and plant origin act as microbial transglutaminase substrate, a crosslinking enzyme capable of introducing isopeptide bonds into proteins between the aminoacids glutamines and lysines. This feature has been widely exploited to modify the biological properties of many proteins, such as emulsifying, gelling, viscosity, and foaming. Besides, microbial transglutaminase has been used to prepare bioplastics that, because made of renewable molecules, are able to replace the high polluting plastics of petrochemical origin. In fact, most of the time, it has been shown that the microbial enzyme strengthens the matrix of protein-based bioplastics, thus, influencing the technological characteristics of the derived materials. In this review, an overview of the ability of many proteins to behave as good substrates of the enzyme and their ability to give rise to bioplastics with improved properties is presented. Different applications of this enzyme confirm its important role as an additive to recover high value-added protein containing by-products with a double aim (i) to produce environmentally friendly materials and (ii) to find alternative uses of wastes as renewable, cheap, and non-polluting sources. Both principles are in line with the bio-economy paradigm.

Antioxidants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 158 ◽  
Author(s):  
Francisca Pérez-Llamas ◽  
Josefa Hernández-Ruiz ◽  
Alberto Cuesta ◽  
Salvador Zamora ◽  
Marino B. Arnao

Melatonin is a pleiotropic molecule with multiple and various functions. In recent years, there has been a considerable increase in the consumption of melatonin supplements for reasons other than those related with sleep (as an antioxidant, for anti-aging, and as a hunger regulator). Although the chemical synthesis of melatonin has recently been improved, several unwanted by-products of the chemical reactions involved occur as contaminants. Phytomelatonin, melatonin of plant origin, was discovered in several plants in 1995, and the possibility of using raw plant material as a source to obtain dietary supplements rich in phytomelatonin instead of synthetic melatonin, with its corresponding chemical by-products was raised. This work characterizes the phytomelatonin-rich extract obtained from selected plant material and determines the contents in phytomelatonin, phenols, flavonoids, and carotenoids. Additionally, the antioxidant activity was measured. Finally, a melatonin-specific bioassay in fish was carried out to demonstrate the excellent biological properties of the natural phytomelatonin-rich extract obtained.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2143
Author(s):  
Josefa Hernández-Ruiz ◽  
Antonio Cano ◽  
Marino B. Arnao

The animal hormone melatonin (N-acetyl-5-methoxytryptamine) is a pleiotropic molecule with multiple and various functions. Phytomelatonin is the melatonin from plants and was discovered in 1995 in some species. Phytomelatonin is considered an interesting molecule in the physiology of plants, as it seems to be involved in many actions, such as germination, growth, rooting and parthenocarpy, including fruit set and ripening; it also seems to play a role during postharvest. It has been studied in processes such as primary and secondary metabolism, photosynthesis and senescence, as well as in the nitrogen and sulfur cycles. Phytomelatonin up- and down-regulates many relevant genes related to plant hormones and key genes related to the above-mentioned aspects. One of the most decisive aspects of phytomelatonin is its relevant role as a bioprotective and alleviating agent against both biotic and abiotic stressors, which has opened up the possibility of using melatonin as a phytoprotector and biostimulant in agriculture. In this respect, using material of plant origin to obtain extracts rich in phytomelatonin instead of using synthetic melatonin (thus avoiding unwanted by-products) has become a topic of discussion. This work characterized the phytomelatonin-rich extracts obtained from selected herbs and determined their contents of phytomelatonin, phenols and flavonoids; the antioxidant activity was also measured. Finally, two melatonin-specific bioassays in plants were applied to demonstrate the excellent biological properties of the natural phytomelatonin-rich extracts obtained. The herb composition and the protocols for obtaining the extracts rich in phytomelatonin are in the process of registration for their legal protection.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 210 ◽  
Author(s):  
Nuno H. C. S. Silva ◽  
Eduarda S. Morais ◽  
Carmen S. R. Freire ◽  
Mara G. Freire ◽  
Armando J. D. Silvestre

Triterpenic acids (TTAs), known for their promising biological properties, can be found in different biomass sources and related by-products, such as Eucalyptus globulus bark, and have been extracted using organic volatile solvents such as dichloromethane. Recently, deep eutectic solvents (DES) have been identified as promising alternatives for the extraction of value-added compounds from biomass. In the present work, several hydrophobic DES were tested for the extraction of TTAs from E. globulus bark. Initial solubility studies revealed that DES based on menthol and thymol as the most promising solvents for these compounds given the highest solubilities obtained for ursolic acid (UA) at temperatures ranging from room temperature up to 90 °C. Accordingly, an eutectic mixture of menthol:thymol (1:2) was confirmed as the best candidate for the TTAs extraction from E. globulus outer bark, leading to extraction yields (weight of TTA per weight of biomass) at room temperature of 1.8 wt% for ursolic acid, 0.84 wt% for oleanolic acid and 0.30 wt% for betulinic acid. These values are significantly higher than those obtained with conventional organic solvents under similar conditions. The results obtained using these DES are promising for the recovery of TTAs for nutraceutical and pharmacological applications, while reinforcing the potential of DES as promising solvents to be applied in biorefinery processes.


Author(s):  
C. Valeria L. Giosafatto ◽  
Asmaa Al-Asmar ◽  
Antonio D'Angelo ◽  
Valentina Roviello ◽  
Marilena Esposito ◽  
...  

The aim of this work was to prepare bioplastics from renewable and biodegradable molecules. In particular, the bioplastics were produced by using as biopolymer source the grass pea (Lathyrus sativus L.) flour, the proteins of which were structurally modified by means of microbial transglutaminase, an enzyme able to catalyze isopeptide bonds between glutamines and lysines. We analyzed, by means of Zeta-potential, the flour suspension with the aim to choose which pH is more stable for the production of film-forming solutions. The bioplastics were produced by casting and they were characterized according to several technological properties. Optical analysis demonstrated that films cast in the presence of the microbial enzyme are more transparent compared to the untreated ones. Moreover, the visualization by Scanning Electron Microscopy demonstrated that the enzyme-modified films possessed a more compact and homogeneous structure. Furthermore, the presence of microbial transglutaminase allowed to obtain film more mechanically resistant. Finally, digestion experiments under physiological conditions performed in order to obtain information useful for applying these novel biomaterials as carriers in the industrial field, indicated that the enzyme-treated coatings might allow the delivery of bioactive molecules in the gastro-intestinal tract.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2548
Author(s):  
Vidhya Prakash ◽  
Akshaya S Krishnan ◽  
Reshma Ramesh ◽  
Chinchu Bose ◽  
Girinath G. Pillai ◽  
...  

Value-added phytochemicals from food by-products and waste materials have gained much interest and among them, dietary polyphenolic compounds with potential biological properties extend a promising sustainable approach. Oxyresveratrol (Oxy), a stilbenoid polyphenol, possesses great therapeutic potential, though its pharmacokinetic issues need attention. A good source of oxyresveratrol was found in underutilized coconut shells and the synbiotic applications of the compound in combination with a potential probiotic isolate Limosilactobacillus fermentum ASBT-2 was investigated. The compound showed lower inhibitory effects on the strain with minimum inhibitory concentration (MIC) of 1000 µg/mL. Oxyresveratrol at sub-MIC concentrations (500 µg/mL and 250 µg/mL) enhanced the probiotic properties without exerting any inhibitory effects on the strain. The combination at sub- MIC concentration of the compound inhibited Salmonella enterica and in silico approaches were employed to elucidate the possible mode of action of oxy on the pathogen. Thus, the combination could target pathogens in the gut without exerting negative impacts on growth of beneficial strains. This approach could be a novel perspective to address the poor pharmacokinetic properties of the compound.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 435 ◽  
Author(s):  
C. Giosafatto ◽  
Asmaa Al-Asmar ◽  
Antonio D’Angelo ◽  
Valentina Roviello ◽  
Marilena Esposito ◽  
...  

The aim of this work was to prepare bioplastics, from renewable and biodegradable molecules, to be used as edible films. In particular, grass pea (Lathyrus sativus L.) flour was used as biopolymer source, the proteins of which were structurally modified by means of microbial transglutaminase, an enzyme able to catalyze isopeptide bonds between glutamines and lysines. We analyzed, by means of Zeta-potential, the flour suspension with the aim to determine which pH is more stable for the production of film-forming solutions. The bioplastics were produced by casting and they were characterized according to several technological properties. Optical analysis demonstrated that films cast in the presence of the microbial enzyme are more transparent compared to the untreated ones. Moreover, the visualization by scanning electron microscopy demonstrated that the enzyme-modified films possessed a more compact and homogeneous structure. Furthermore, the presence of microbial transglutaminase allowed to obtain film more mechanically resistant. Finally, digestion experiments under physiological conditions performed in order to obtain information useful for applying these novel biomaterials as carriers in the industrial field, indicated that the enzyme-treated coatings might allow the delivery of bioactive molecules in the gastro-intestinal tract.


Future Foods ◽  
2021 ◽  
pp. 100036
Author(s):  
Bhagya Jagadiswaran ◽  
Vishvaa Alagarasan ◽  
Priyadharshini Palanivelu ◽  
Radhika Theagarajan ◽  
J.A. Moses ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2632
Author(s):  
Henrique Silvano Arruda ◽  
Eric Keven Silva ◽  
Nayara Macêdo Peixoto Araujo ◽  
Gustavo Araujo Pereira ◽  
Glaucia Maria Pastore ◽  
...  

Anthocyanins are naturally occurring phytochemicals that have attracted growing interest from consumers and the food industry due to their multiple biological properties and technological applications. Nevertheless, conventional extraction techniques based on thermal technologies can compromise both the recovery and stability of anthocyanins, reducing their global yield and/or limiting their application in food systems. The current review provides an overview of the main innovative processes (e.g., pulsed electric field, microwave, and ultrasound) used to recover anthocyanins from agri-food waste/by-products and the mechanisms involved in anthocyanin extraction and their impacts on the stability of these compounds. Moreover, trends and perspectives of anthocyanins’ applications in food systems, such as antioxidants, natural colorants, preservatives, and active and smart packaging components, are addressed. Challenges behind anthocyanin implementation in food systems are displayed and potential solutions to overcome these drawbacks are proposed.


2021 ◽  
Vol 13 (15) ◽  
pp. 8354
Author(s):  
Vo Hong Tu ◽  
Steven W. Kopp ◽  
Nguyen Thuy Trang ◽  
Andreas Kontoleon ◽  
Mitsuyasu Yabe

Vietnam plays an important role in bearing global food security. However, Vietnamese rice farmers face several challenges, including pressures to develop sustainable livelihoods while reducing the environmental impacts of their production activities. Various Vietnamese agricultural restructuring policies were promulgated to promote the adoption of environmentally friendly practices to generate high value added for rice farmers, but the farmers are reluctant to adopt them because of perceived lack of demand. Decreasing consumption of rice in Asia and increasing demands in Europe shaped Vietnamese rice exporting policies. New trade agreements, such as the UK–Vietnam Free Trade Agreement, offer new target markets for Vietnamese rice farmers. This research provides empirical evidence related to the preferences of UK consumers for ethical attributes for floating rice imported from Vietnam. Floating rice represents a traditional method of rice cultivation that relies on the natural flooding cycle. Its cultivation uses very few agrochemical inputs and provides several other environmental, economic, and social benefits. In an online survey, the study used a choice experiment that asked 306 UK consumers to report their preferences for one kilo of floating rice with three non-market attributes: reduction in carbon dioxide emissions, allocation of profits to the farmers, and restitution of biodiversity. Overall, study participants favored the attributes of floating rice, but reported utility for only the “fair trade” attribute and for a marginal willingness to pay premiums for profit allocations to farmers. Consumers did not find value in either CO2 emission reduction or biodiversity improvement. Results from the study provide recommendations to develop agricultural programs, distribution strategies, and informational methods to encourage floating rice consumption in the UK.


2021 ◽  
Vol 28 ◽  
pp. 100433
Author(s):  
Alexandra Del Castillo-Llamosas ◽  
Pablo G. del Río ◽  
Alba Pérez-Pérez ◽  
Remedios Yáñez ◽  
Gil Garrote ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document