scholarly journals Genome-Wide Identification of Epigenetic Regulators in Quercus suber L.

2020 ◽  
Vol 21 (11) ◽  
pp. 3783
Author(s):  
Helena G. Silva ◽  
Rómulo S. Sobral ◽  
Alexandre P. Magalhães ◽  
Leonor Morais-Cecílio ◽  
M. Manuela R. Costa

Modifications of DNA and histones, including methylation and acetylation, are critical for the epigenetic regulation of gene expression during plant development, particularly during environmental adaptation processes. However, information on the enzymes catalyzing all these modifications in trees, such as Quercus suber L., is still not available. In this study, eight DNA methyltransferases (DNA Mtases) and three DNA demethylases (DDMEs) were identified in Q. suber. Histone modifiers involved in methylation (35), demethylation (26), acetylation (8), and deacetylation (22) were also identified in Q. suber. In silico analysis showed that some Q. suber DNA Mtases, DDMEs and histone modifiers have the typical domains found in the plant model Arabidopsis, which might suggest a conserved functional role. Additional phylogenetic analyses of the DNA and histone modifier proteins were performed using several plant species homologs, enabling the classification of the Q. suber proteins. A link between the expression levels of each gene in different Q. suber tissues (buds, flowers, acorns, embryos, cork, and roots) with the functions already known for their closest homologs in other species was also established. Therefore, the data generated here will be important for future studies exploring the role of epigenetic regulators in this economically important species.

2020 ◽  
Author(s):  
HG Silva ◽  
RS Sobral ◽  
AP Magalhães ◽  
L Morais-Cecílio ◽  
MMR Costa

AbstractModifications of DNA and histones, including methylation and acetylation, are critical for the epigenetic regulation of gene expression during plant development, particularly during environmental adaptation processes. However, information on the enzymes catalyzing all these modifications in perennial trees, such as Quercus suber, is still not available. In this study, several epigenetic modifier proteins, including eight DNA methyltransferases (DNA Mtases), three DNA demethylases (DDMEs) and ninety-one histone modifiers including thirty-five histone methyltransferases (HMTs), twenty-six histone demethylases (HDMTs), eight histone acetyltransferases (HATs) and twenty-two histone acetylases (HDACs) were identified in Q. suber. Phylogenetic analyses of the DNA and histone modifier proteins were performed using several plant species homologs, enabling the classification of the Q. suber proteins. Additional in silico analysis showed that some Q. suber DNA Mtases, DMEs and histone modifiers have the typical domains found in the plant model Arabidopsis, which might suggest a conserved functional role. A link between the expression levels of each gene in different Q. suber tissues (buds, flowers, acorns, embryos, cork and roots) with the functions already known for their closest homologs in other species was also established. Therefore, the data generated here are important for future studies exploring the role of epigenetic regulators in this economically important species.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Parisa Soltan-Alinejad ◽  
Javad Rafinejad ◽  
Farrokh Dabiri ◽  
Piero Onorati ◽  
Olle Terenius ◽  
...  

Abstract Objectives Annually, 1.2 million humans are stung by scorpions and severely affected by their venom. Some of the scorpion species of medical importance have a similar morphology to species with low toxicity. To establish diagnostic tools for surveying scorpions, the current study was conducted to generate three mitochondrial markers, Cytochrome Oxidase I (COI gene), 12S rDNA and 16S rDNA for six species of medically important Iranian scorpions: Androctonus crassicauda, Hottentotta saulcyi, Mesobuthus caucasicus, M. eupeus, Odontobuthus doriae, and Scorpio maurus. Results Phylogenetic analyses of the obtained sequences corroborated the morphological identification. For the first time, 12S rDNA sequences are reported from Androctonus crassicauda, Hottentotta saulcyi, Mesobuthus caucasicus and M. eupeus and also the 16S rDNA sequence from Hottentotta saulcyi. We conclude that the mitochondrial markers are useful for species determination among these medically important species of scorpions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyung Seok Kim ◽  
Kevin J. Roe

AbstractDetailed information on species delineation and population genetic structure is a prerequisite for designing effective restoration and conservation strategies for imperiled organisms. Phylogenomic and population genomic analyses based on genome-wide double digest restriction-site associated DNA sequencing (ddRAD-Seq) data has identified three allopatric lineages in the North American freshwater mussel genus Cyprogenia. Cyprogenia stegaria is restricted to the Eastern Highlands and displays little genetic structuring within this region. However, two allopatric lineages of C. aberti in the Ozark and Ouachita highlands exhibit substantial levels (mean uncorrected FST = 0.368) of genetic differentiation and each warrants recognition as a distinct evolutionary lineage. Lineages of Cyprogenia in the Ouachita and Ozark highlands are further subdivided reflecting structuring at the level of river systems. Species tree inference and species delimitation in a Bayesian framework using single nucleotide polymorphisms (SNP) data supported results from phylogenetic analyses, and supports three species of Cyprogenia over the currently recognized two species. A comparison of SNPs generated from both destructively and non-destructively collected samples revealed no significant difference in the SNP error rate, quality and amount of ddRAD sequence reads, indicating that nondestructive or trace samples can be effectively utilized to generate SNP data for organisms for which destructive sampling is not permitted.


2021 ◽  
Author(s):  
D. Touchette ◽  
I. Altshuler ◽  
C. Gostinčar ◽  
P. Zalar ◽  
I. Raymond-Bouchard ◽  
...  

AbstractThe novel extremophilic yeast Rhodotorula frigidialcoholis, formerly R. JG1b, was isolated from ice-cemented permafrost in University Valley (Antarctic), one of coldest and driest environments on Earth. Phenotypic and phylogenetic analyses classified R. frigidialcoholis as a novel species. To characterize its cold-adaptive strategies, we performed mRNA and sRNA transcriptomic analyses, phenotypic profiling, and assessed ethanol production at 0 and 23 °C. Downregulation of the ETC and citrate cycle genes, overexpression of fermentation and pentose phosphate pathways genes, growth without reduction of tetrazolium dye, and our discovery of ethanol production at 0 °C indicate that R. frigidialcoholis induces a metabolic switch from respiration to ethanol fermentation as adaptation in Antarctic permafrost. This is the first report of microbial ethanol fermentation utilized as the major energy pathway in response to cold and the coldest temperature reported for natural ethanol production. R. frigidialcoholis increased its diversity and abundance of sRNAs when grown at 0 versus 23 °C. This was consistent with increase in transcription of Dicer, a key protein for sRNA processing. Our results strongly imply that post-transcriptional regulation of gene expression and mRNA silencing may be a novel evolutionary fungal adaptation in the cryosphere.


2019 ◽  
Vol 15 ◽  
pp. 117693431988994
Author(s):  
Shulin Zhang ◽  
Yaling Cai ◽  
Jinggong Guo ◽  
Kun Li ◽  
Renhai Peng ◽  
...  

Determining the genetic rearrangement and domestication footprints in Gossypium hirsutum cultivars and primitive race genotypes are essential for effective gene conservation efforts and the development of advanced breeding molecular markers for marker-assisted breeding. In this study, 94 accessions representing the 7 primitive races of G hirsutum, along with 9 G hirsutum and 12 Gossypium barbadense cultivated accessions were evaluated. The genotyping-by-sequencing (GBS) approach was employed and 146 558 single nucleotide polymorphisms (SNP) were generated. Distinct SNP signatures were identified through the combination of selection scans and association analyses. Phylogenetic analyses were also conducted, and we concluded that the Latifolium, Richmondi, and Marie-Galante race accessions were more genetically related to the G hirsutum cultivars and tend to cluster together. Fifty-four outlier SNP loci were identified by selection-scan analysis, and 3 SNPs were located in genes related to the processes of plant responding to stress conditions and confirmed through further genome-wide signals of marker-phenotype association analysis, which indicate a clear selection signature for such trait. These results identified useful candidate gene locus for cotton breeding programs.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yushan Liu ◽  
Yizhou Wang ◽  
Jiabo Pei ◽  
Yadong Li ◽  
Haiyue Sun

Abstract Background Caffeic acid O-methyltransferases (COMTs) play an important role in the diversification of natural products, especially in the phenylalanine metabolic pathway of plant. The content of COMT genes in blueberry and relationship between their expression patterns and the lignin content during fruit development have not clearly investigated by now. Results Ninety-two VcCOMTs were identified in Vaccinium corymbosum. According to phylogenetic analyses, the 92 VcCOMTs were divided into 2 groups. The gene structure and conserved motifs within groups were similar which supported the reliability of the phylogenetic structure groupings. Dispersed duplication (DSD) and whole-genome duplication (WGD) were determined to be the major forces in VcCOMTs evolution. The results showed that the results of qRT-PCR and lignin content for 22 VcCOMTs, VcCOMT40 and VcCOMT92 were related to lignin content at different stages of fruit development of blueberry. Conclusion We identified COMT gene family in blueberry, and performed comparative analyses of the phylogenetic relationships in the 15 species of land plant, and gene duplication patterns of COMT genes in 5 of the 15 species. We found 2 VcCOMTs were highly expressed and their relative contents were similar to the variation trend of lignin content during the development of blueberry fruit. These results provide a clue for further study on the roles of VcCOMTs in the development of blueberry fruit and could promisingly be foundations for breeding blueberry clutivals with higher fruit firmness and longer shelf life.


Neuroforum ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mira Jakovcevski ◽  
Geraldine Zimmer-Bensch

Abstract Brain development comprises a fine-tuned ensemble of molecular processes that need to be orchestrated in a very coordinated way throughout time and space. A wide array of epigenetic mechanisms, ranging from DNA methylation and histone modifications to noncoding RNAs, have been identified for their major role in guiding developmental processes such as progenitor proliferation, neuronal migration, and differentiation through precise regulation of gene expression programs. The importance of epigenetic processes during development is reflected by the high prevalence of neurodevelopmental diseases which are caused by a lack or mutation of genes encoding for transcription factors and other epigenetic regulators. Most of these factors process central functions for proper brain development, and respective mutations lead to severe cognitive defects. A better understanding of epigenetic programs during development might open new routes toward better treatment options for related diseases.


Author(s):  
Dan Sun ◽  
Thomas S. Layman ◽  
Hyeonsoo Jeong ◽  
Paramita Chatterjee ◽  
Kathleen Grogan ◽  
...  

ABSTRACTDNA methylation is known to play critical roles in key biological processes. Most of our knowledge on regulatory impacts of DNA methylation has come from laboratory-bred model organisms, which may not exhibit the full extent of variation found in wild populations. Here, we investigated naturally-occurring variation in DNA methylation in a wild avian species, the white-throated sparrow (Zonotrichia albicollis). This species offers exceptional opportunities for studying the link between genetic differentiation and phenotypic traits because of a non-recombining chromosome pair linked to both plumage and behavioral phenotypes. Using novel single-nucleotide resolution methylation maps and gene expression data, we show that DNA methylation and the expression of DNA methyltransferases are significantly higher in adults than in nestlings. Genes for which DNA methylation varied between nestlings and adults were implicated in development and cell differentiation and were located throughout the genome. In contrast, differential methylation between plumage morphs was localized to the non-recombining chromosome pair. One subset of CpGs on the non-recombining chromosome was extremely hypomethylated and localized to transposable elements. Changes in methylation predicted changes in gene expression for both chromosomes. In summary, we demonstrate changes in genome-wide DNA methylation that are associated with development and with specific functional categories of genes in white-throated sparrows. Moreover, we observe substantial DNA methylation reprogramming associated with the suppression of recombination, with implications for genome integrity and gene expression divergence. These results offer an unprecedented view of ongoing epigenetic reprogramming in a wild population.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2878 ◽  
Author(s):  
Erhan Aslan ◽  
Nurçin Küçükoğlu ◽  
Muhittin Arslanyolu

Autophagy serves as a turnover mechanism for the recycling of redundant and/or damaged macromolecules present in eukaryotic cells to re-use them under starvation conditions via a double-membrane structure known as autophagosome. A set of eukaryotic genes called autophagy-related genes (ATGs) orchestrate this highly elaborative process. The existence of these genes and the role they play in different eukaryotes are well-characterized. However, little is known of their role in some eukaryotes such as ciliates. Here, we report the computational analyses of ATG genes in five ciliate genomes to understand their diversity. Our results show that Oxytricha trifallax is the sole ciliate which has a conserved Atg12 conjugation system (Atg5-Atg12-Atg16). Interestingly, Oxytricha Atg16 protein includes WD repeats in addition to its N-terminal Atg16 domain as is the case in multicellular organisms. Additionally, phylogenetic analyses revealed that E2-like conjugating protein Atg10 is only present in Tetrahymena thermophila. We fail to find critical autophagy components Atg5, Atg7 and Atg8 in the parasitic ciliate Ichthyophthirius multifiliis. Contrary to previous reports, we also find that ciliate genomes do not encode typical Atg1 since all the candidate sequences lack an Atg1-specific C-terminal domain which is essential for Atg1 complex formation. Consistent with the absence of Atg1, ciliates also lack other members of the Atg1 complex. However, the presence of Atg6 in all ciliates examined here may rise the possibility that autophagosome formation could be operated through Atg6 in ciliates, since Atg6 has been shown as an alternative autophagy inducer. In conclusion, our results highlight that Atg proteins are partially conserved in ciliates. This may provide a better understanding for the autophagic destruction of the parental macronucleus, a developmental process also known as programmed nuclear death in ciliates.


2021 ◽  
Author(s):  
Yu Zhang ◽  
Yanyun Li ◽  
Yuanyuan Zhang ◽  
Zeyu Zhang ◽  
Deyu Zhang ◽  
...  

Flag leaf senescence is an important biological process that drives the remobilization of nutrients to the growing organs of rice. Leaf senescence is controlled by genetic information via gene expression and epigenetic modification, but the precise mechanism is as of yet unclear. Here, we analyzed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment by chromatin immunoprecipitation-sequencing (ChIP-seq) and examined its association with transcriptomes by RNA-seq during flag leaf aging in rice (Oryza sativa). We found that genome-wide H3K9 acetylation levels increased with age-dependent senescence in rice flag leaf, and there was a positive correlation between the density and breadth of H3K9ac and gene expression and transcript elongation. A set of 1,249 up-regulated, differentially expressed genes (DEGs) and 996 down-regulated DEGs showing a strong relationship between temporal changes in gene expression and gain/loss of H3K9ac was observed during rice flag leaf aging. We produced a landscape of H3K9 acetylation- modified gene expression targets that includes known senescence-associated genes, metabolism-related genes, as well as miRNA biosynthesis- related genes. Our findings reveal a complex regulatory network of metabolism- and senescence-related pathways mediated by H3K9ac and also elucidate patterns of H3K9ac-mediated regulation of gene expression during flag leaf aging in rice.


Sign in / Sign up

Export Citation Format

Share Document