scholarly journals Imprinting of Mesenchymal Stromal Cell Transcriptome Persists even after Treatment in Patients with Multiple Myeloma

2020 ◽  
Vol 21 (11) ◽  
pp. 3854
Author(s):  
Léa Lemaitre ◽  
Laura Do Souto Ferreira ◽  
Marie-Véronique Joubert ◽  
Hervé Avet-Loiseau ◽  
Ludovic Martinet ◽  
...  

Introduction. Multiple myeloma (MM) is a B-cell neoplasm characterized by clonal expansion of malignant plasma cells (MM cells) in the bone-marrow (BM) compartment. BM mesenchymal stromal cells (MSC) from newly diagnosed MM patients were shown to be involved in MM pathogenesis and chemoresistance. The patients displayed a distinct transcriptome and were functionally different from healthy donors’ (HD) MSC. Our aim was to determine whether MM–MSC also contributed to relapse. Methods. We obtained and characterized patients’ MSC samples at diagnosis, two years after intensive treatment, without relapse and at relapse. Results. Transcriptomic analysis revealed differences in gene expression between HD and MM-MSC, whatever the stage of the disease. An easier differentiation towards adipogenesis at the expense of osteoblatogeneis was observed, even in patients displaying a complete response to treatment. Although their transcriptome was similar, we found that MSC from relapsed patients had an increased immunosuppressive ability, compared to those from patients in remission. Conclusion. We demonstrated that imprinting of MSC transcriptome demonstrated at diagnosis of MM, persisted even after the apparent disappearance of MM cells induced by treatment, suggesting the maintenance of a local context favorable to relapse.

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1320
Author(s):  
Antonio Pierro ◽  
Alessandro Posa ◽  
Costanzo Astore ◽  
Mariacarmela Sciandra ◽  
Alessandro Tanzilli ◽  
...  

Multiple myeloma is a hematological malignancy of plasma cells usually detected due to various bone abnormalities on imaging and rare extraosseous abnormalities. The traditional approach for disease detection was based on plain radiographs, showing typical lytic lesions. Still, this technique has many limitations in terms of diagnosis and assessment of response to treatment. The new approach to assess osteolytic lesions in patients newly diagnosed with multiple myeloma is based on total-body low-dose CT. The purpose of this paper is to suggest a guide for radiologists in performing and evaluating a total-body low-dose CT in patients with multiple myeloma, both newly-diagnosed and in follow-up (pre and post treatment).


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Nicolas Espagnolle ◽  
Benjamin Hebraud ◽  
Jean-Gérard Descamps ◽  
Mélanie Gadelorge ◽  
Marie-Véronique Joubert ◽  
...  

Multiple myeloma (MM) is an incurable B cell neoplasia characterized by the accumulation of tumor plasma cells within the bone marrow (BM). As a consequence, bone osteolytic lesions develop in 80% of patients and remain even after complete disease remission. We and others had demonstrated that BM-derived mesenchymal stromal cells (MSCs) are abnormal in MM and thus cannot be used for autologous treatment to repair bone damage. Adipose stromal cells (ASCs) represent an interesting alternative to MSCs for cellular therapy. Thus, in this study, we wondered whether they could be a good candidate in repairing MM bone lesions. For the first time, we present a transcriptomic, phenotypic, and functional comparison of ASCs from MM patients and healthy donors (HDs) relying on their autologous MSC counterparts. In contrast to MM MSCs, MM ASCs did not exhibit major abnormalities. However, the changes observed in MM ASCs and the supportive property of ASCs on MM cells question their putative and safety uses at an autologous or allogenic level.


2021 ◽  
Vol 66 (2) ◽  
pp. 218-230
Author(s):  
T. A. Aristova ◽  
E. V. Batorov ◽  
V. V. Sergeevicheva ◽  
S. A. Sizikova ◽  
G. Yu. Ushakova ◽  
...  

Introduction. Multiple myeloma (MM) is a B-cell malignancy with clonal expansion of plasma cells in bone marrow. Highdose chemotherapy with autologous haematopoietic stem cell transplantation is among main consolidation therapies in MM. Myeloid-derived suppressor cells (MDSCs) are immature myeloid-accompanying cells able to suppress the immune response. The administration of granulocyte colony stimulating factor (G-CSF) to mobilise haematopoietic stem cells (HSCs) increases the MDSC count in peripheral blood (PB).Aim — to study MDSC subsets in PB of remission MM patients and their incidence dynamics at HSC mobilisation.Methods. The study surveyed 35 MM patients prior to and after HSC mobilisation. The counts of granulocytic (G-MDSCs; Lin–HLA-DR–CD33+ CD66b+), monocytic (М-MDSCs; CD14+ HLA-DRlow/–) and early MDSCs (E-MDSCs; Lin–HLA-DR– CD33+ CD66b–) were estimated in flow cytometry.Results. Remission MM patients differed from healthy donors in higher relative counts of G-MDSCs (Lin–HLA-DR– CD33+ CD66b+) and increased relative and absolute counts of М-MDSCs (CD14+ HLA-DRlow/–). М-MDSCs significantly outnumbered G-MDSCs. MDSC subset counts were elevated in complete response (CR) and very good partial response (VGPR), as well as in partial response (PR). Higher relative MDSC counts were associated with greater pretreatment (2–3 lines of chemotherapy). After HSC mobilisation with cyclophosphamide 2–4 g/m2 + G-CSF (filgrastim 5 μg/kg/day), the median relative E-MDSC and M-MDSC counts increased by 2.3 and 2.0 times, respectively, while the relative G-MDSC count raised 46-fold perturbing the MDSC subset balance.Conclusion. Remission MM patients had the increased relative G-MDSC and both relative and absolute M-MDSC counts compared to donors. A greater patient pretreatment was associated with higher relative G-MDSC counts. Treatment response (CR/VGPR vs. PR) was not coupled with MDSC count variation. The G-CSF-induced HSC mobilisation entailed a significant expansion of all three MDSC subsets in PB.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3896-3896
Author(s):  
Mahshid Rahmat ◽  
Nicholas Haradhvala ◽  
Romanos Sklavenitis-Pistofidis ◽  
Jihye Park ◽  
Daisy Huynh ◽  
...  

Abstract Introduction. Multiple myeloma (MM) is a complex and heterogeneous malignancy of plasma cells that has two precursor states: monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). MGUS and SMM are asymptomatic states that eventually give rise to overt MM, with some patients progressing, while others do not. Recent studies in MM pathobiology have highlighted epigenetic alterations that contribute to the onset, progression and heterogeneity of MM. Global hypomethylation of DNA, including tumor suppressor genes, and hypermethylation of B-cell specific enhancers, abnormal histone methylation patterns due to the overexpression of histone methyltransferases such as MMSET, and deregulation of non-coding RNAs along with mutations in different classes of chromatin modulators underline a potential for epigenetic biomarkers in disease prognosis and treatment. This study aimed to define epigenetic pathways that lead to the dynamic regulation of gene expression in MM pathogenesis. Methods. We performed ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) and RNA-seq on 10 MM cell lines and CD138+ plasma cells isolated from bone marrow aspirates of 3 healthy donors, 9 SMM, 8 newly diagnosed MM (NDMM) and 9 relapsed (RRMM) patients. ATAC-seq reads were trimmed of adapters, aligned to hg19 using bowtie2, and filtered for mapping quality >=Q30 using the ENCODE ATAC-seq pipeline. Reads mapping to promoter regions, defined as -400 to +250 bases from a refseq transcription start site, were counted using bedtools for each sample. Promoter read counts were then normalized by the total number of reads in promoters in the sample, scaled to 1 million total reads, and converted to log10(x+1) space. Results. To characterize the epigenetic contribution to disease progression in MM, we first identified accessible promoter regions in normal plasma cells (NPC), SMM, NDMM and RRMM patients and found regions displaying differential accessibility in MM progression. Next, we intersected the list of differential accessible regions (DARs) with matched transcriptome data and observed two main clusters: genes with unaltered transcription profiles and genes in which the dynamics of open chromatin regions (OCRs) correlated with gene expression. Transcriptomic analysis revealed that a large portion of the differentially expressed (DE) genes in SMM remain DE in NDMM as compared to NPCs (882 genes out of 1642 and 1150 DE genes in SMM and NDMM, respectively). Those genes were significantly enriched for pathways like epithelial mesenchymal transition, cell cycle checkpoints and mitosis, KRAS signaling and interleukin-JAK-STAT pathways. To investigate the genes that behaved differently among the stages of disease, we looked at differential accessibility and expression in NDMM and SMM samples, and integrated them with Whole-Genome Bisulfite-Sequencing and 450K DNA-methylation data from MM patients and healthy donors (BLUEPRINT). This analysis led to the identification of novel genes in MM progression, such as the transcriptional repressor ZNF254 and IRAK3, a negative regulator of the TLR/IL1R signaling pathway. Although gene expression data for these genes showed comparable mRNA levels in SMM and NPCs, followed by a significant decrease in NDMM/ RRMM, ATAC-seq revealed a striking drop in promoter accessibility in SMM, NDMM and RRMM cases. Comparison of ATAC-seq peaks to DNA methylation and ChIP-seq data revealed that the altered OCR of IRAK3 is actually hypermethylated in MM patients and marked by H3K4me3, a marker of active promoters, in MM cell lines. Hypermethylation of IRAK3 has been described in hepatocellular carcinoma, where it is associated with poor prognosis. Together, our data suggest that the identified IRAK3 OCR may act as a bivalent domain that loses accessibility in the precursor states and gains DNA methylation in MM progression. Hence, IRAK3 methylation could be a novel prognostic marker in MM. Conclusion. We have generated a global epigenetic map of primary tumors from patients at the smoldering, newly diagnosed and relapsed/refractory stage of multiple myeloma. Integrative analysis of ATAC-seq data with DNA methylome, transcriptome and whole-genome map of active and repressive histone marks in our study led to the identification of IRAK3 as a novel epigenetic biomarker of disease progression. Disclosures Licht: Celgene: Research Funding. Ghobrial:Takeda: Consultancy; BMS: Consultancy; Celgene: Consultancy; Janssen: Consultancy.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2542
Author(s):  
Patricia Maiso ◽  
Pedro Mogollón ◽  
Enrique M. Ocio ◽  
Mercedes Garayoa

Multiple myeloma (MM) is a hematological malignancy of plasma cells that proliferate and accumulate within the bone marrow (BM). Work from many groups has made evident that the complex microenvironment of the BM plays a crucial role in myeloma progression and response to therapeutic agents. Within the cellular components of the BM, we will specifically focus on mesenchymal stromal cells (MSCs), which are known to interact with myeloma cells and the other components of the BM through cell to cell, soluble factors and, as more recently evidenced, through extracellular vesicles. Multiple structural and functional abnormalities have been found when characterizing MSCs derived from myeloma patients (MM-MSCs) and comparing them to those from healthy donors (HD-MSCs). Other studies have identified differences in genomic, mRNA, microRNA, histone modification, and DNA methylation profiles. We discuss these distinctive features shaping MM-MSCs and propose a model for the transition from HD-MSCs to MM-MSCs as a consequence of the interaction with myeloma cells. Finally, we review the contribution of MM-MSCs to several aspects of myeloma pathology, specifically to myeloma growth and survival, drug resistance, dissemination and homing, myeloma bone disease, and the induction of a pro-inflammatory and immunosuppressive microenvironment.


Blood ◽  
2010 ◽  
Vol 116 (14) ◽  
pp. 2543-2553 ◽  
Author(s):  
Annemiek Broyl ◽  
Dirk Hose ◽  
Henk Lokhorst ◽  
Yvonne de Knegt ◽  
Justine Peeters ◽  
...  

Abstract To identify molecularly defined subgroups in multiple myeloma, gene expression profiling was performed on purified CD138+ plasma cells of 320 newly diagnosed myeloma patients included in the Dutch-Belgian/German HOVON-65/GMMG-HD4 trial. Hierarchical clustering identified 10 subgroups; 6 corresponded to clusters described in the University of Arkansas for Medical Science (UAMS) classification, CD-1 (n = 13, 4.1%), CD-2 (n = 34, 1.6%), MF (n = 32, 1.0%), MS (n = 33, 1.3%), proliferation-associated genes (n = 15, 4.7%), and hyperdiploid (n = 77, 24.1%). Moreover, the UAMS low percentage of bone disease cluster was identified as a subcluster of the MF cluster (n = 15, 4.7%). One subgroup (n = 39, 12.2%) showed a myeloid signature. Three novel subgroups were defined, including a subgroup of 37 patients (11.6%) characterized by high expression of genes involved in the nuclear factor kappa light-chain-enhancer of activated B cells pathway, which include TNFAIP3 and CD40. Another subgroup of 22 patients (6.9%) was characterized by distinct overexpression of cancer testis antigens without overexpression of proliferation genes. The third novel cluster of 9 patients (2.8%) showed up-regulation of protein tyrosine phosphatases PRL-3 and PTPRZ1 as well as SOCS3. To conclude, in addition to 7 clusters described in the UAMS classification, we identified 3 novel subsets of multiple myeloma that may represent unique diagnostic entities.


2021 ◽  
pp. JCO.21.01045
Author(s):  
Pieter Sonneveld ◽  
Meletios A. Dimopoulos ◽  
Meral Beksac ◽  
Bronno van der Holt ◽  
Sara Aquino ◽  
...  

PURPOSE To address the role of consolidation treatment for newly diagnosed, transplant eligible patients with multiple myeloma in a controlled clinical trial. PATIENTS AND METHODS The EMN02/HOVON95 trial compared consolidation treatment with two cycles of bortezomib, lenalidomide, and dexamethasone (VRD) or no consolidation after induction and intensification therapy, followed by continuous lenalidomide maintenance. Primary study end point was progression-free survival (PFS). RESULTS Eight hundred seventy-eight eligible patients were randomly assigned to receive VRD consolidation (451 patients) or no consolidation (427 patients). At a median follow-up of 74.8 months, median PFS with adjustment for pretreatment was prolonged in patients randomly assigned to VRD consolidation (59.3 v 42.9 months, hazard ratio [HR] = 0.81; 95% CI, 0.68 to 0.96; P = .016). The PFS benefit was observed across most predefined subgroups, including revised International Staging System (ISS) stage, cytogenetics, and prior treatment. Revised ISS3 stage (HR, 2.00; 95% CI, 1.41 to 2.86) and ampl1q (HR, 1.67; 95% CI, 1.37 to 2.04) were significant adverse prognostic factors. The median duration of maintenance was 33 months (interquartile range 13-86 months). Response ≥ complete response (CR) after consolidation versus no consolidation before start of maintenance was 34% versus 18%, respectively ( P < .001). Response ≥ CR on protocol including maintenance was 59% with consolidation and 46% without ( P < .001). Minimal residual disease analysis by flow cytometry in a subgroup of 226 patients with CR or stringent complete response or very good partial response before start of maintenance demonstrated a 74% minimal residual disease–negativity rate in VRD-treated patients. Toxicity from VRD was acceptable and manageable. CONCLUSION Consolidation treatment with VRD followed by lenalidomide maintenance improves PFS and depth of response in newly diagnosed patients with multiple myeloma as compared to maintenance alone.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4462-4462
Author(s):  
Xiu Ly Song ◽  
Raphaël Szalat ◽  
Alexis Talbot ◽  
HaiVu Nguyen ◽  
Mehmet K. Samur ◽  
...  

Abstract In Multiple Myeloma (MM), the t(4;14) translocation is associated with a poor outcome. However, beside this translocation, the genetic events which determine the adverse evolution of the disease and the resistance to treatments remain elusive. In this study we performed whole exome or RNA sequencing analysis of samples from 65 newly diagnosed t(4;14) MM. We found that NRAS, KRAS, MAPK and FGFR3 are frequently mutated (12%, 9%, 13.8%, and 20% respectively). Overall, the FGFR3/RAS/BRAF/MAPK genes were mutated in 36 cases (54%). There was a negative correlation between mutations in FGFR3 and those occurring in NRAS, KRAS and BRAF as expected from the mutually exclusive occurrence of mutations in these genes. In addition to alterations in TP53 and DIS3, we found marked elevated frequency of mutations in PRKD2 (10.7%), ATM/ATR (10.7%) and MYCBP2 (7.6%), reduced frequency in FAM46C (1.5%) and no mutation in TRAF3 and CCND1. Mutations in ATM/ATR were strongly associated with the MB4-2 breakpoint (Bp) (p = 1.62 10-4) and significantly correlated with mutations affecting genes coding for members of the MAPK family. We observed a positive correlation between non-silent mutations in PRKD2 and the MB4-1 or MB4-3 Bp (p = 1.3 10-2). Of note, PRKD2 mutations are exclusively found in 3 t(4;14) MM cell lines and among the 84 MM sequenced by Bolli et al. (1), none of the non t(4;14) patient were mutated in PRKD2, indicating that this genetic lesion is associated with t(4;14) MM. In the NCI-H929 t(4;14) MM cell line, which is mutated for PRKD2, encoding the PKD2 serine/threonine kinase, we observed elevated levels of phosphorylated PKD2. Furthermore, inhibition of PKD, decreased PKD2 phosphorylation and triggered reduced proliferation and apoptosis of MM cell lines and fresh plasma cells from patients in vitro. These results define a specific mutational landscape for t(4;14) MM and identify PKD2 as a potential therapeutic target in MM patients. Altogether, these results define a specific mutational landscape for t(4;14) MM and identify PKD2 as a potential therapeutic target in MM patients. Reference 1. Bolli, N., Avet-Loiseau, H., Wedge, D.C., Van Loo, P., Alexandrov, L.B., Martincorena, I., Dawson, K.J., Iorio, F., Nik-Zainal, S., Bignell, G.R., et al. (2014). Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun 5, 2997. Disclosures Munshi: Janssen: Consultancy; Takeda: Consultancy; Celgene: Consultancy; Amgen: Consultancy; Merck: Consultancy; Pfizer: Consultancy; Oncopep: Patents & Royalties.


Author(s):  
Sally Thirkettle ◽  
Joanne Russell ◽  
Sarah Wilson ◽  
Tasneem Ganijee ◽  
Samar Kulkarni ◽  
...  

Background The novel daratumumab immunotherapy is a human IgG1 kappa antibody targeted against CD38, which is almost universally expressed on myeloma plasma cells. Daratumumab has efficacy in clinical trials for the treatment of multiple myeloma; however, it complicates laboratory monitoring of the serological response to treatment, as it is detected by serum electrophoresis and/or immunofixation. Methods Laboratory reports of electrophoresis patterns serially performed in a single laboratory of six patients with relapsed multiple myeloma receiving daratumumab therapy as part a clinical trial were reviewed retrospectively. Results Post administration of daratumumab therapy, an additional band was visible by serum electrophoresis, migrating to the mid-gamma region, which was confirmed as IgG kappa by immunofixation. In five out of the six patients, this band was quantified at <2.0 g/L. For one patient, this band co-migrated with the patient’s disease paraprotein band, so both bands were quantified together. The appearance of an apparent second paraprotein band while receiving treatment for multiple myeloma can cause anxiety for patients, confusion for healthcare workers and may also underestimate complete remission rates. Conclusions The clinical laboratory must be aware of the interference of daratumumab in serum electrophoresis. Effective communication between clinicians and the laboratory is essential for the production of clinically valuable, non-misleading reports for these patients.


Leukemia ◽  
2018 ◽  
Vol 33 (3) ◽  
pp. 730-738 ◽  
Author(s):  
Surbhi Sidana ◽  
Nidhi Tandon ◽  
Angela Dispenzieri ◽  
Morie A. Gertz ◽  
Francis K. Buadi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document