scholarly journals Ferroptosis in Liver Diseases: An Overview

2020 ◽  
Vol 21 (14) ◽  
pp. 4908 ◽  
Author(s):  
Martina Maria Capelletti ◽  
Hana Manceau ◽  
Hervé Puy ◽  
Katell Peoc’h

Ferroptosis is an iron-dependent form of cell death characterized by intracellular lipid peroxide accumulation and redox imbalance. Ferroptosis shows specific biological and morphological features when compared to the other cell death patterns. The loss of lipid peroxide repair activity by glutathione peroxidase 4 (GPX4), the presence of redox-active iron and the oxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids are considered as distinct fingerprints of ferroptosis. Several pathways, including amino acid and iron metabolism, ferritinophagy, cell adhesion, p53, Keap1/Nrf2 and phospholipid biosynthesis, can modify susceptibility to ferroptosis. Through the decades, various diseases, including acute kidney injury; cancer; ischemia–reperfusion injury; and cardiovascular, neurodegenerative and hepatic disorders, have been associated with ferroptosis. In this review, we provide a comprehensive analysis of the main biological and biochemical mechanisms of ferroptosis and an overview of chemicals used as inducers and inhibitors. Then, we report the contribution of ferroptosis to the spectrum of liver diseases, acute or chronic. Finally, we discuss the use of ferroptosis as a therapeutic approach against hepatocellular carcinoma, the most common form of primary liver cancer.

2021 ◽  
Vol 11 ◽  
Author(s):  
Yan Zhao ◽  
Zineng Huang ◽  
Hongling Peng

Cell death is essential for the normal metabolism of human organisms. Ferroptosis is a unique regulated cell death (RCD) mode characterized by excess accumulation of iron-dependent lipid peroxide and reactive oxygen species (ROS) compared with other well-known programmed cell death modes. It has been currently recognized that ferroptosis plays a rather important role in the occurrence, development, and treatment of traumatic brain injury, stroke, acute kidney injury, liver damage, ischemia–reperfusion injury, tumor, etc. Of note, ferroptosis may be explained by the expression of various molecules and signaling components, among which iron, lipid, and amino acid metabolism are the key regulatory mechanisms of ferroptosis. Meanwhile, tumor cells of hematological malignancies, such as leukemia, lymphoma, and multiple myeloma (MM), are identified to be sensitive to ferroptosis. Targeting potential regulatory factors in the ferroptosis pathway may promote or inhibit the disease progression of these malignancies. In this review, a systematic summary was conducted on the key molecular mechanisms of ferroptosis and the current potential relationships of ferroptosis with leukemia, lymphoma, and MM. It is expected to provide novel potential therapeutic approaches and targets for hematological malignancies.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yi Yu ◽  
Yuan Yan ◽  
Fanglin Niu ◽  
Yajun Wang ◽  
Xueyi Chen ◽  
...  

AbstractFerroptosis, a recently identified and iron-dependent cell death, differs from other cell death such as apoptosis, necroptosis, pyroptosis, and autophagy-dependent cell death. This form of cell death does not exhibit typical morphological and biochemical characteristics, including cell shrinkage, mitochondrial fragmentation, nuclear condensation. The dysfunction of lipid peroxide clearance, the presence of redox-active iron as well as oxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids are three essential features of ferroptosis. Iron metabolism and lipid peroxidation signaling are increasingly recognized as central mediators of ferroptosis. Ferroptosis plays an important role in the regulation of oxidative stress and inflammatory responses. Accumulating evidence suggests that ferroptosis is implicated in a variety of cardiovascular diseases such as atherosclerosis, stroke, ischemia-reperfusion injury, and heart failure, indicating that targeting ferroptosis will present a novel therapeutic approach against cardiovascular diseases. Here, we provide an overview of the features, process, function, and mechanisms of ferroptosis, and its increasingly connected relevance to oxidative stress, inflammation, and cardiovascular diseases.


2021 ◽  
pp. 1-15
Author(s):  
Lu Zhou ◽  
Xian Xue ◽  
Qing Hou ◽  
Chunsun Dai

<b><i>Background:</i></b> Ferroptosis, an iron-dependent form of regulated necrosis mediated by lipid peroxidation, predominantly polyunsaturated fatty acids, is involved in postischemic and toxic kidney injury. However, the role and mechanisms for tubular epithelial cell (TEC) ferroptosis in kidney fibrosis remain largely unknown. <b><i>Objectives:</i></b> The aim of the study was to decipher the role and mechanisms for TEC ferroptosis in kidney fibrosis. <b><i>Methods:</i></b> Mouse models with unilateral ureter obstruction (UUO) or ischemia/reperfusion injury (IRI) were generated. <b><i>Results:</i></b> We found that TEC ferroptosis exhibited as reduced glutathione peroxidase 4 (GPX4) expression and increased 4-hydroxynonenal abundance was appeared in kidneys from chronic kidney disease (CKD) patients and mouse models with UUO or IRI. Inhibition of ferroptosis could largely mitigate kidney injury, interstitial fibrosis, and inflammatory cell accumulation in mice after UUO or IRI. Additionally, treatment of TECs with (1S,3R)-RSL-3, an inhibitor of GPX4, could enhance cell ferroptosis and recruit macrophages. Furthermore, inhibiting TEC ferroptosis reduced monocyte chemotactic protein 1 (MCP-1) secretion and macrophage chemotaxis. <b><i>Conclusions:</i></b> This study uncovers that TEC ferroptosis may promote interstitial fibrosis and inflammation, and targeting ferroptosis may shine a light on protecting against kidney fibrosis in patients with CKDs.


Author(s):  
Yunqing Chen ◽  
Hongyan Fan ◽  
Shijun Wang ◽  
Guanmin Tang ◽  
Changlin Zhai ◽  
...  

Ischemia-reperfusion (I/R) injury is a major cause of cell death and organ damage in numerous pathologies, including myocardial infarction, stroke, and acute kidney injury. Current treatment methods for I/R injury are limited. Ferroptosis, which is a newly uncovered type of regulated cell death characterized by iron overload and lipid peroxidation accumulation, has been investigated in various diseases. There is increasing evidence of a close association between ferroptosis and I/R injury, with ferroptosis frequently identified as a new therapeutic target for the management of I/R injury. This review summarizes the current status of ferroptosis and discusses its relationship with I/R injury, as well as potential treatment strategies targeting it.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Lihong Mao ◽  
Tianming Zhao ◽  
Yan Song ◽  
Lin Lin ◽  
Xiaofei Fan ◽  
...  

Abstract Ferroptosis is an iron- and lipotoxicity-dependent form of regulated cell death (RCD). It is morphologically and biochemically distinct from characteristics of other cell death. This modality has been intensively investigated in recent years due to its involvement in a wide array of pathologies, including cancer, neurodegenerative diseases, and acute kidney injury. Dysregulation of ferroptosis has also been linked to various liver diseases and its modification may provide a hopeful and attractive therapeutic concept. Indeed, targeting ferroptosis may prevent the pathophysiological progression of several liver diseases, such as hemochromatosis, nonalcoholic steatohepatitis, and ethanol-induced liver injury. On the contrary, enhancing ferroptosis may promote sorafenib-induced ferroptosis and pave the way for combination therapy in hepatocellular carcinoma. Glutathione peroxidase 4 (GPx4) and system xc− have been identified as key players to mediate ferroptosis pathway. More recently diverse signaling pathways have also been observed. The connection between ferroptosis and other forms of RCD is intricate and compelling, where discoveries in this field advance our understanding of cell survival and fate. In this review, we summarize the central molecular machinery of ferroptosis, describe the role of ferroptosis in non-cancer hepatic disease conditions and discuss the potential to manipulate ferroptosis as a therapeutic strategy.


Biology ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 48 ◽  
Author(s):  
Theodoros Eleftheriadis ◽  
Georgios Pissas ◽  
Georgia Antoniadi ◽  
Vassilios Liakopoulos ◽  
Ioannis Stefanidis

Ischemia–reperfusion injury contributes to the pathogenesis of many diseases, with acute kidney injury included. Hibernating mammals survive prolonged bouts of deep torpor with a dramatic drop in blood pressure, heart, and breathing rates, interspersed with short periods of arousal and, consequently, ischemia–reperfusion injury. Clarifying the differences under warm anoxia or reoxygenation between human cells and cells from a native hibernator may reveal interventions for rendering human cells resistant to ischemia–reperfusion injury. Human and hamster renal proximal tubular epithelial cells (RPTECs) were cultured under warm anoxia or reoxygenation. Mouse RPTECs were used as a phylogenetic control for hamster cells. Cell death was assessed by both cell imaging and lactate dehydrogenase (LDH) release assay, apoptosis by cleaved caspase-3, autophagy by microtubule-associated protein 1-light chain 3 B II (LC3B-II) to LC3B-I ratio, necroptosis by phosphorylated mixed-lineage kinase domain-like pseudokinase, reactive oxygen species (ROS) fluorometrically, and lipid peroxidation, the end-point of ferroptosis, by malondialdehyde. Human cells died after short periods of warm anoxia or reoxygenation, whereas hamster cells were extremely resistant. In human cells, apoptosis contributed to cell death under both anoxia and reoxygenation. Although under reoxygenation, ROS increased in both human and hamster RPTECs, lipid peroxidation-induced cell death was detected only in human cells. Autophagy was observed only in human cells under both conditions. Necroptosis was not detected in any of the evaluated cells. Clarifying the ways that are responsible for hamster RPTECs escaping from apoptosis and lipid peroxidation-induced cell death may reveal interventions for preventing ischemia–reperfusion-induced acute kidney injury in humans.


2020 ◽  
Vol 217 (11) ◽  
Author(s):  
Miyako Tanaka ◽  
Marie Saka-Tanaka ◽  
Kozue Ochi ◽  
Kumiko Fujieda ◽  
Yuki Sugiura ◽  
...  

Accumulating evidence indicates that cell death triggers sterile inflammation and that impaired clearance of dead cells causes nonresolving inflammation; however, the underlying mechanisms are still unclear. Here, we show that macrophage-inducible C-type lectin (Mincle) senses renal tubular cell death to induce sustained inflammation after acute kidney injury in mice. Mincle-deficient mice were protected against tissue damage and subsequent atrophy of the kidney after ischemia–reperfusion injury. Using lipophilic extract from the injured kidney, we identified β-glucosylceramide as an endogenous Mincle ligand. Notably, free cholesterol markedly enhanced the agonistic effect of β-glucosylceramide on Mincle. Moreover, β-glucosylceramide and free cholesterol accumulated in dead renal tubules in proximity to Mincle-expressing macrophages, where Mincle was supposed to inhibit clearance of dead cells and increase proinflammatory cytokine production. This study demonstrates that β-glucosylceramide in combination with free cholesterol acts on Mincle as an endogenous ligand to induce cell death–triggered, sustained inflammation after acute kidney injury.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Natasha Rogers ◽  
Jennifer Li ◽  
Stephen Alexander

Abstract Background and Aims Ischemia reperfusion injury (IRI) is an important contributor to acute kidney injury (AKI) and manifests as delayed graft function following kidney transplantation. Limiting the damage of IRI has implications on graft outcomes and has driven further exploration of the underlying pathophysiology. We hypothesize that pyroptosis, a pro-inflammatory form of cell death, has an important role in IRI and AKI. The pyroptosis pathway converges to the cleavage and release of N-terminal of the Gasdermin-D protein, leading to pore formation in the cell membrane and cell death. We examined the effects of Gasdermin-D mutation on inflammation in acute kidney injury. Method Male C57BL/6 mice were exposed to ethyl-N-nitrosourea mutagenesis, leading to a loss-of-function, single nucleotide polymorphism (isoleucine to asparagine mutation, I105N) in the Gasdermin-D gene. Age- and gender-matched littermate control wild-type, heterozygous and homozygous Gasdermin-DI105N mice were subjected to bilateral renal IRI (36°C, 22mins) and sacrificed 24-hours post-reperfusion for analysis of renal function, histology and biomolecular phenotyping. To delineate if the GasderminD mutation in renal parenchymal or hematopoietic cells were key drivers of IRI, we generated chimeric mice with whole body irradiation and infusion of syngeneic donor bone marrow. Following 8 weeks of engraftment, bilateral renal IRI was performed with analysis at 24 h reperfusion. Results Homozygote and heterozygote Gasdermin-DI105N mice were protected from renal IRI in a gene dose-dependent manner when compared to wild-type, with lower mean serum creatinine (15.7, 48.1 and 85.5µmol/L respectively, p&lt;0.001), less histological tubular injury and cell death (1.8, 3.6 and 5.1 TUNEL+ cells/hpf, p&lt;0.01) and significantly decreased expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, RANTES). Homozygote GasderminDI105N chimeric mice (reconstituted with wild-type donor bone marrow) were more susceptible to IRI, and serum creatinine was similar to that of wild-type chimeric control mice, indicating that hematopoietic cells rather than parenchymal cells, are likely predominant drivers of injury. Similarly, adoptive transfer of CpG-activated CD11c+ dendritic cells into homozygous Gasdermin-DI105N mice augmented renal injury compared to GpC-treated cells. Conclusion GasderminDI105N mice were protected from IRI and demonstrates the importance of the pyroptosis pathway on acute kidney injury. Manipulation of GasderminD is potentially an attractive target to mitigate inflammation and cellular death following injury.


2020 ◽  
Vol 71 (2) ◽  
pp. 99-109
Author(s):  
Ivana Čepelak ◽  
Slavica Dodig ◽  
Daniela Čepelak Dodig

AbstractFerroptosis is a recently identified form of regulated cell death that differs from other known forms of cell death morphologically, biochemically, and genetically. The main properties of ferroptosis are free redox-active iron and consequent iron-dependent peroxidation of polyunsaturated fatty acids in cell membrane phospholipids, which results in the accumulation of lipid-based reactive oxygen species due to loss of glutathione peroxidase 4 activity. Ferroptosis has increasingly been associated with neurodegenerative diseases, carcinogenesis, stroke, intracerebral haemorrhage, traumatic brain injury, and ischemia-reperfusion injury. It has also shown a significant therapeutic potential in the treatment of cancer and other diseases. This review summarises current knowledge about and the mechanisms that regulate ferroptosis.


Author(s):  
Xinbo Wang ◽  
Yanjin Wang ◽  
Zan Li ◽  
Jieling Qin ◽  
Ping Wang

Ferroptosis is an iron-dependent form of programmed cell death, which plays crucial roles in tumorigenesis, ischemia–reperfusion injury and various human degenerative diseases. Ferroptosis is characterized by aberrant iron and lipid metabolisms. Mechanistically, excess of catalytic iron is capable of triggering lipid peroxidation followed by Fenton reaction to induce ferroptosis. The induction of ferroptosis can be inhibited by sufficient glutathione (GSH) synthesis via system Xc– transporter-mediated cystine uptake. Therefore, induction of ferroptosis by inhibition of cystine uptake or dampening of GSH synthesis has been considered as a novel strategy for cancer therapy, while reversal of ferroptotic effect is able to delay progression of diverse disorders, such as cardiopathy, steatohepatitis, and acute kidney injury. The ubiquitin (Ub)–proteasome pathway (UPP) dominates the majority of intracellular protein degradation by coupling Ub molecules to the lysine residues of protein substrate, which is subsequently recognized by the 26S proteasome for degradation. Ubiquitination is crucially involved in a variety of physiological and pathological processes. Modulation of ubiquitination system has been exhibited to be a potential strategy for cancer treatment. Currently, more and more emerged evidence has demonstrated that ubiquitous modification is involved in ferroptosis and dominates the vulnerability to ferroptosis in multiple types of cancer. In this review, we will summarize the current findings of ferroptosis surrounding the viewpoint of ubiquitination regulation. Furthermore, we also highlight the potential effect of ubiquitination modulation on the perspective of ferroptosis-targeted cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document