scholarly journals Groundbreaking Anticancer Activity of Highly Diversified Oxadiazole Scaffolds

2020 ◽  
Vol 21 (22) ◽  
pp. 8692
Author(s):  
Alessandra Benassi ◽  
Filippo Doria ◽  
Valentina Pirota

Nowadays, an increasing number of heterocyclic-based drugs found application in medicinal chemistry and, in particular, as anticancer agents. In this context, oxadiazoles—five-membered aromatic rings—emerged for their interesting biological properties. Modification of oxadiazole scaffolds represents a valid strategy to increase their anticancer activity, especially on 1,2,4 and 1,3,4 regioisomers. In the last years, an increasing number of oxadiazole derivatives, with remarkable cytotoxicity for several tumor lines, were identified. Structural modifications, that ensure higher cytotoxicity towards malignant cells, represent a solid starting point in the development of novel oxadiazole-based drugs. To increase the specificity of this strategy, outstanding oxadiazole scaffolds have been designed to selectively interact with biological targets, including enzymes, globular proteins, and nucleic acids, showing more promising antitumor effects. In the present work, we aim to provide a comprehensive overview of the anticancer activity of these heterocycles, describing their effect on different targets and highlighting how their structural versatility has been exploited to modulate their biological properties.

Author(s):  
Alessandra Benassi ◽  
Filippo Doria ◽  
Valentina Pirota

Nowadays, an increasing number of heterocyclic-based drugs found application in medicinal chemistry and, in particular, as anticancer agents. In this context, oxadiazoles, five-membered aromatic rings, emerged for their interesting biological properties. Modification of oxadiazole scaffolds represents a valid strategy to increase their anticancer activity, especially on 1,2,4 and 1,3,4 regioisomers. In the last years, an increasing number of oxadiazole derivatives, with remarkable cytotoxicity for several tumor lines, were identified. Structural modifications, that ensure higher cytotoxicity towards malignant cells, represent a solid starting point in the development of novel oxadiazoles-based drugs. To increase the specificity of this strategy, outstanding oxadiazole scaffolds have been designed to selectively interact with biological targets, including enzymes, globular proteins and nucleic acids, showing more promising antitumor effects. In the present work, we aim to provide a comprehensive overview of the anticancer activity of these heterocycles, describing their effect on different targets and highlighting how their structural versatility has been exploited to modulate their biological properties.


2020 ◽  
Vol 15 (1) ◽  
pp. 2-13 ◽  
Author(s):  
Hongyu Tao ◽  
Ling Zuo ◽  
Huanli Xu ◽  
Cong Li ◽  
Gan Qiao ◽  
...  

Background: In recent years, many novel alkaloids with anticancer activity have been found in China, and some of them are promising for developing as anticancer agents. Objective: This review aims to provide a comprehensive overview of the information about alkaloid anticancer agents disclosed in Chinese patents, and discusses their potential to be developed as anticancer drugs used clinically. Methods: Anticancer alkaloids disclosed in Chinese patents in recent 5 years were presented according to their mode of actions. Their study results published on PubMed, and SciDirect databases were presented. Results: More than one hundred anticancer alkaloids were disclosed in Chinese patents and their mode of action referred to arresting cell cycle, inhibiting protein kinases, affecting DNA synthesis and p53 expression, etc. Conclusion: Many newly found alkaloids displayed potent anticancer activity both in vitro and in vivo, and some of the anticancer alkaloids acted as protein kinase inhibitors or CDK inhibitors possess the potential for developing as novel anticancer agents.


2021 ◽  
Vol 21 (18) ◽  
pp. 1644-1644
Author(s):  
Lian-Shun Feng

Cancer, a highly heterogeneous disease at intra/inter patient levels, is one of the most serious threats to human health across the world [1, 2]. Notwithstanding the noteworthy advances in its treat-ment, the morbidity and mortality of cancer are projected to grow for a long period, and the global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020 [3]. Accordingly, there is a constant need to explore novel anticancer agents. <p> There are several strategies to discover novel anticancer candidates: (1) new lead hits or candidates from natural resources [4] whichexhibit various biological properties and are a rich source of com-pounds in drug discovery due to the structural and mechanistic diversity, and more than 60% anti-cancer agents can be traced to a natural product; (2) Molecular hybridization is one of the most prom-ising strategies for the discovery of novel anticancer drug candidates since hybrid molecules have the potential to bind multiple targets or to enhance the effect through acting with another bio-target or to counterbalance the side effects caused by the other part of the hybrid [5]; (3) Dimerization is a useful tool to develop novel anticancer drug candidates with enhanced biological activity, reduced side effects and improved pharmacokinetic profiles [6]; (4) Drug repurposing strategy is is an attractive strategy and has been approved, along with non-anticancer macrolide drugs for the treatment of cancer, for anticancer drug discovery since toxicity and pharmacokinetic profiles have already been estab-lished [7]. <p> Heterocycles coumarin, β-lactone, macrolide and triazole are useful anticancer pharmacophores since their derivatives could exert the anticancer activity through diverse mechanisms, inclusive of inhibition of aromatase, carbonic anhydrase, ki-nase, P-glycoprotein, sulfatase, telomerase, vascular endothelial growth factor receptor 2 and tubulin [8-11]. In particular, nat-ural-derived coumarin, β-lactone and macrolide derivatives are important sources of new anticancer lead hits/candidates; mac-rolide repurposed drugs can circumvent high cost and long-time associated with traditional drug discovery strategies; couma-rin, β-lactone and macrolide hybrids as well as bis-triazole compounds have the potential to enhance the anticancer activity, overcome drug resistance, reduce the side effects and improve pharmacokinetic profiles.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2032
Author(s):  
Vanessa Brito ◽  
Gilberto Alves ◽  
Paulo Almeida ◽  
Samuel Silvestre

Steroids constitute a unique class of chemical compounds, playing an important role in physiopathological processes, and have high pharmacological interest. Additionally, steroids have been associated with a relatively low toxicity and high bioavailability. Nowadays, multiple steroidal derivatives are clinically available for the treatment of numerous diseases. Moreover, different structural modifications on their skeleton have been explored, aiming to develop compounds with new and improved pharmacological properties. Thus, steroidal arylidene derivatives emerged as a relevant example of these modifications. This family of compounds has been mainly described as 17β-hydroxysteroid dehydrogenase type 1 and aromatase inhibitors, as well as neuroprotective and anticancer agents. Besides, due to their straightforward preparation and intrinsic chemical reactivity, steroidal arylidene derivatives are important synthetic intermediates for the preparation of other compounds, particularly bearing heterocyclic systems. In fact, starting from arylidenesteroids, it was possible to develop bioactive steroidal pyrazolines, pyrazoles, pyrimidines, pyridines, spiro-pyrrolidines, amongst others. Most of these products have also been studied as anti-inflammatory and anticancer agents, as well as 5α-reductase and aromatase inhibitors. This work aims to provide a comprehensive overview of steroidal arylidene derivatives described in the literature, highlighting their bioactivities and importance as synthetic intermediates for other pharmacologically active compounds.


Author(s):  
Adam McCluskey ◽  
Cecilia Russell

Chalcones in their various guises have been considered either valid and critically important lead compounds in the development of novel anticancer agents or as pan assay interference compounds, PAINS. Medicinal chemistry is replete with exemplars from both “camps” progressing to clinical utility. Chalcones offer a simple starting point for the development of specific compounds with high levels of activity toward key biological targets. Chalcones have been shown to display a wide array of anticancer compounds. This chapter seeks to offer an overview of key examples in an effort to encourage further reading and research in development in this intriguing space.


2020 ◽  
Vol 20 (21) ◽  
pp. 1916-1937
Author(s):  
Xinjia Yan ◽  
Jing Wen ◽  
Lin Zhou ◽  
Lei Fan ◽  
Xiaobo Wang ◽  
...  

Cancer, which has been cursed for human beings for long time is considered as one of the leading causes of morbidity and mortality across the world. In spite of different types of treatments available, chemotherapy is still deemed as a favored treatment for the cancer. Unfortunately, many currently accessible anticancer agents have developed multidrug resistance along with fatal adverse effects. Therefore, intensive efforts have been made to seek for new active drugs with improved anticancer efficacy and reduced adverse effects. In recent years, the emergence of heterocyclic ring-containing anticancer agents has gained a great deal of attention among medicinal chemists. 1,3- oxazole is a versatile heterocyclic compound, and its derivatives possess broad-spectrum pharmacological properties, including anticancer activity against both drug-susceptible, drug-resistant and even multidrug-resistant cancer cell lines through multiple mechanisms. Thus, the 1,3-oxazole moiety is a useful template for the development of novel anticancer agents. This review will provide a comprehensive overview of the recent advances on 1,3-oxazole derivatives with potential therapeutic applications as anticancer agents, focus on the chemical structures, anticancer activity, and mechanisms of action.


Author(s):  
Congshan Shang ◽  
Yani Hou ◽  
Tingting Meng ◽  
Min Shi ◽  
Guoyan Cui

: The incidence and mortality of cancer continue to grow since the current medical treatments often fail to produce a complete and durable tumor response, and ultimately give rise to therapy resistance and tumor relapse. Heterocycles with potential therapeutic values are of great pharmacological importance, and among them, indazole moiety is privileged struc-ture in medicinal chemistry. Indazole compounds possess potential anticancer activity, and the indazole-based agents Ax-itinib, Lonidamine and Pazopanib have already been applied for cancer therapy, demonstrating indazole compounds are useful templates for the development of novel anticancer agents. The aim of this review is to present the main aspects of exploring anticancer properties, such as the structural modifications, the structure-activity relationship and mechanisms of action, making an effort to highlight the importance and therapeutic potentials of the indazole compounds in the present anticancer agents.


Author(s):  
Wei Tian ◽  
Chunmiao Wang ◽  
Danrong Li ◽  
Huaxin Hou

Anthraquinones exhibit a unique anticancer activity. Since their discovery, medicinal chemists have made several structural modifications, resulting in the design and synthesis of a large number of novel anthraquinone compounds with different biological activities. In general, anthraquinone compounds have been considered to have anticancer activity mainly through DNA damage, cycle arrest and apoptosis. However, recent studies have shown that novel anthraquinone compounds may also inhibit cancer through paraptosis, autophagy, radiosensitising, overcoming chemoresistance and other methods. This Review article provides an overview of novel anthraquinone compounds that have been developed as anticancer agents in recent years and focuses on their anticancer mechanism.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Joanna Stalinska ◽  
Lisa Houser ◽  
Monika Rak ◽  
Susan B. Colley ◽  
Krzysztof Reiss ◽  
...  

AbstractStructural variations of the benzylphenoxyacetamide (BPA) molecular skeleton were explored as a viable starting point for designing new anti-glioblastoma drug candidates. Hand-to-hand computational evaluation, chemical modifications, and cell viability testing were performed to explore the importance of some of the structural properties in order to generate, retain, and improve desired anti-glioblastoma characteristics. It was demonstrated that several structural features are required to retain the anti-glioblastoma activity, including a carbonyl group of the benzophenone moiety, as well as 4′-chloro and 2,2-dimethy substituents. In addition, the structure of the amide moiety can be modified in such a way that desirable anti-glioblastoma and physical properties can be improved. Via these structural modifications, more than 50 compounds were prepared and tested for anti-glioblastoma activity. Four compounds were identified (HR28, HR32, HR37, and HR46) that in addition to HR40 (PP1) from our previous study, have been determined to have desirable physical and biological properties. These include high glioblastoma cytotoxicity at low μM concentrations, improved water solubility, and the ability to penetrate the blood brain barrier (BBB), which indicate a potential for becoming a new class of anti-glioblastoma drugs.


Author(s):  
Akshay R. Yadav ◽  
Shrinivas K. Mohite ◽  
Chandrakant S. Magdum

A new Series of novel N-Substituted 1,3,4-Oxadiazole derivatives (3a-3f) were synthesized by the reacting 3,5-dinitrobenzoic acid and subsequent treatment with thiourea by microwave assisted synthesis as green chemistry. Confirmation of the chemical structure of the synthesized compounds was substantiated by TLC, IR, 1HNMR, and MS spectroscopy. Synthesized compounds were screened for anticancer activity on MCF7 cell line. All synthesized compounds exhibit significant biological activity and certainly hold a greater promise for discovering potent biologically active molecules. Further the compounds 3b, 3c and 3e has been moderate tested for its anticancer activity and out of these all, compound 3c showed most notable anticancer activity against breast cancer cell line. Molecules under study were analysed for ADME properties using SwissADME servers. ADME profiles were evaluated and most of the molecules were found to be suitable for further studies. In silico ADMET analysis is proved to be a good tool in drug discovery.


Sign in / Sign up

Export Citation Format

Share Document