scholarly journals Transcriptomic Leaf Profiling Reveals Differential Responses of the Two Most Traded Coffee Species to Elevated [CO2]

2020 ◽  
Vol 21 (23) ◽  
pp. 9211
Author(s):  
Isabel Marques ◽  
Isabel Fernandes ◽  
Pedro H.C. David ◽  
Octávio S. Paulo ◽  
Luis F. Goulao ◽  
...  

As atmospheric [CO2] continues to rise to unprecedented levels, understanding its impact on plants is imperative to improve crop performance and sustainability under future climate conditions. In this context, transcriptional changes promoted by elevated CO2 (eCO2) were studied in genotypes from the two major traded coffee species: the allopolyploid Coffea arabica (Icatu) and its diploid parent, C. canephora (CL153). While Icatu expressed more genes than CL153, a higher number of differentially expressed genes were found in CL153 as a response to eCO2. Although many genes were found to be commonly expressed by the two genotypes under eCO2, unique genes and pathways differed between them, with CL153 showing more enriched GO terms and metabolic pathways than Icatu. Divergent functional categories and significantly enriched pathways were found in these genotypes, which altogether supports contrasting responses to eCO2. A considerable number of genes linked to coffee physiological and biochemical responses were found to be affected by eCO2 with the significant upregulation of photosynthetic, antioxidant, and lipidic genes. This supports the absence of photosynthesis down-regulation and, therefore, the maintenance of increased photosynthetic potential promoted by eCO2 in these coffee genotypes.

2019 ◽  
Vol 28 (1) ◽  
Author(s):  
Gintarė Juozapaitienė ◽  
Austra Dikšaitytė ◽  
Gintarė Sujetovienė ◽  
Jūratė Aleinikovienė ◽  
Romualdas Juknys

In studies on plant responses to climate change more attention has been given to aboveground processes although carbon input by plants into the soil is a major flux in the global carbon cycle. The objective of study was to investigate the effects of elevated CO2 and temperature on carbon allocation and partitioning in different parts of plant, soil, and microbial biomass. An experiment was conducted on summer rape (Brassica napus L.) under increased levels of air temperature and atmospheric CO2 in controlled environment chambers. Results showed that the amount of leaf, stem and root carbon statistically significantly increased under elevated CO2 and temperature conditions. Microbial biomass carbon significantly increased by 11.2% and 13.5% under elevated CO2 and elevated CO2 and temperature, respectively, although soil carbon under both treatments decreased. It is concluded that carbon allocation is controlled under different climate conditions; however, elevated CO2 and temperature together will have a more significant effect for carbon allocation to different plant parts and microbial biomass carbon compared to elevated CO2 alone.


2021 ◽  
Author(s):  
Anthony M. Buckley ◽  
Duncan Ewin ◽  
Ines B. Moura ◽  
Mark H. Wilcox ◽  
Gillian R. Douce

AbstractMucosal biofilms play an important role in intestinal health; however, the mucosal bacterial community has been implicated in persistent infections. Clostridioides difficile is an important nosocomial pathogen, with an unacceptable high rate of recurrence following antibiotic treatment. As C. difficile is a known biofilm producer, a property which may contribute to this suboptimal therapeutic response, we have investigated the transcriptional changes and regulatory pathways during the transition from planktonic to biofilm mode of growth. Widespread metabolic reprogramming during biofilm formation was detected, characterised by an increased usage of glycine metabolic pathways to yield key metabolites, which are used for energy production and synthesis of short chain fatty acids. We detected the expression of 107 small non-coding RNAs that appear to, in some part, regulate these pathways; however, 25 of these small RNAs were specifically expressed during biofilm formation, indicating they may play a role in regulating biofilm-specific genes. Similar to Bacillus subtilis, biofilm formation is a multi-regulatory process and SinR negatively regulates biofilm formation independently of other known mechanisms. This comprehensive analysis furthers our understanding of biofilm formation in C. difficile, identifies potential targets for anti-virulence factors, and provides evidence of the link between metabolism and virulence traits.


2017 ◽  
Vol 20 (4) ◽  
pp. 1063-1070 ◽  
Author(s):  
Michael Y Galperin ◽  
David M Kristensen ◽  
Kira S Makarova ◽  
Yuri I Wolf ◽  
Eugene V Koonin

Abstract For the past 20 years, the Clusters of Orthologous Genes (COG) database had been a popular tool for microbial genome annotation and comparative genomics. Initially created for the purpose of evolutionary classification of protein families, the COG have been used, apart from straightforward functional annotation of sequenced genomes, for such tasks as (i) unification of genome annotation in groups of related organisms; (ii) identification of missing and/or undetected genes in complete microbial genomes; (iii) analysis of genomic neighborhoods, in many cases allowing prediction of novel functional systems; (iv) analysis of metabolic pathways and prediction of alternative forms of enzymes; (v) comparison of organisms by COG functional categories; and (vi) prioritization of targets for structural and functional characterization. Here we review the principles of the COG approach and discuss its key advantages and drawbacks in microbial genome analysis.


Weed Science ◽  
2015 ◽  
Vol 63 (SP1) ◽  
pp. 23-63 ◽  
Author(s):  
Franck E. Dayan ◽  
Daniel K. Owens ◽  
Natalia Corniani ◽  
Ferdinando Marcos Lima Silva ◽  
Susan B. Watson ◽  
...  

Herbicides inhibit biochemical and physiological processes or both with lethal consequences. The target sites of these small molecules are usually enzymes involved in primary metabolic pathways or proteins carrying out essential physiological functions. Herbicides tend to be highly specific for their respective target sites and have served as tools to study these physiological and biochemical processes in plants (Dayan et al. 2010b).


2021 ◽  
Vol 23 (3) ◽  
pp. 267-278
Author(s):  
MANILA BHATIA ◽  

A study was conducted in open top chambers (OTCs) to understand the effect of elevated temperature (ambient+2±0.5oC) and elevated CO2 (550±50 ppm) individually and in combination on Chenopodium album. Impact of the climate variables was studied in terms of selected plant attributes, viz., leaf area, RGR etc. Study showed that elevated temperature as well as elevated CO2 individually and in combination had significant positive effect on growth and development, rate of photosynthesis, and water use efficiency of the Chenopodium album. Rate of transpiration and stomatal conductance increased marginally in plants grown at elevated temperature, but a marked decrease was evident at elevated CO2 individually and in combination with elevated temperature as compared that in plants grown in ambient conditions in the Chenopodium album. No significant changes were observed in relative water content and relative stress injury under any of the Chenopodium album. Treatments changes were evident with respect to the activity of antioxidant enzymes and nitrate reductase and peptide banding pattern using SDS-PAGE. This research was conducted to examine the joint effects of increased temperature and elevated CO2 level onChenopodium album (C3 weed). Results from this experiment suggested that rising (CO2) could alter physiochemical response for growth and development of Chenopodium album and it is well defined competitors with different crops in current changing climate conditions.


2019 ◽  
Vol 9 (24) ◽  
pp. 5389 ◽  
Author(s):  
Fatma Elleuch ◽  
Hajer Ben Hlima ◽  
Mohamed Barkallah ◽  
Patrick Baril ◽  
Slim Abdelkafi ◽  
...  

Dunaliella is a green microalga known for its ability to produce high levels of carotenoids under well-defined growing conditions. Molecular responses to the simultaneous effect of increasing salinity, light intensity and decrease of nitrogen availability were investigated in terms of their effect on different metabolic pathways (isoprenoids synthesis, glycolysis, carbohydrate use, etc.) by following the transcriptional regulation of enolase (ENO), 1-deoxy-D-xylulose 5-phosphate synthase (DXS), lycopene β-cyclase (LCYB), carotene globule protein (CGP), chloroplast-localized heat shock protein (HSP70), and chloroplast ribulose phosphate-3-epimerase (RPE) genes. The intracellular production of carotenoid was increased five times in stressed Dunaliella cells compared to those grown in an unstressed condition. At transcriptional levels, ENO implicated in glycolysis, and revealing about polysaccharides degradation, showed a two-stage response during the first 72 h. Genes directly involved in β-carotene accumulation, namely, CGP and LCYB, revealed the most important increase by about 54 and 10 folds, respectively. In silico sequence analysis, along with 3D modeling studies, were performed to identify possible posttranslational modifications of CGP and LCYB proteins. Our results described, for the first time, their probable regulation by sumoylation covalent attachment as well as the presence of expressed SUMO (small ubiquitin-related modifier) protein in Dunaliella sp.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2532
Author(s):  
Ya Zhang ◽  
Chong Wang ◽  
Shuangqing Liu ◽  
Xiaolan Liao

To explore the molecular mechanism through which the novel fungicide N-(naphthalen-1-yl) phenazine-1-carboxamide (NNPCN) inhibits Rhizoctonia solani, we clarified the target and mode of action, explored lead compounds, and developed novel fungicides. Methods: Growth observation, scanning electron microscopy, transmission electron microscopy, transcriptome sequencing technology, quantitative real-time PCR (qRT-PCR), physiological and biochemical determination, and reverse molecular docking technology were used to study the effects of this compound on the microscopic morphology of R. solani. The differentially expressed genes (DEGs), functions, and metabolic pathways were analyzed. The genes displaying significant differences were randomly selected for qRT-PCR verification and confirmed by physiological and biochemical determination to construct their binding mode with key targets. The results showed that the mycelium treated with NNPCN produced a red secretion and exhibited progressive creeping growth. Under a scanning electron microscope, hyphal swelling, uneven thickness, fractures, deformities, and hyphal surface warts increased. Under a transmission electron microscope, the cell wall was separated, the subcellular organelles were disintegrated, and the septum disappeared. Furthermore, there were 6838 DEGs under NNPCN treatment, including 291 significant DEGs, of which 143 were upregulated and 148 downregulated. Ten DEGs were randomly selected for qRT-PCR verification, and the gene expression trend was consistent with the transcriptome sequencing results. Gene Ontology enrichment analysis showed that the DEGs were significantly enriched in cell wall glucan decomposition and metabolism, cell membrane synthesis, metabolism, composition, organic hydroxyl compounds, oxidoreductase activity, and transition metal ion binding. Metabolic pathway enrichment analysis showed that there were 16 significant metabolic pathways, such as steroid biosynthesis and ABC transporters. Further study found that genes, such as the glycosyl hydrolase family 10 domain-containing protein, which is related to glucan catabolic process function as tied to the cell wall, were downregulated. Lipid oxidation, modification, and other genes related to the cell membrane were also downregulated. Secondly, genes related to lipid modification, lipid metabolism processes, integral components of the membrane, and other ABC transporters were downregulated. Fatty-acid oxidation and carbohydrate metabolic processes, which are related to antioxidant and metabolic functions, displayed significant differences in their target genes. Nitrite reductase [NADH] activity and mitochondrial organization gene expression were downregulated. These results revealed that target genes may involved in the cell wall, cell membrane, antioxidant and metabolism, nitrogen metabolism, and mitochondria. The results of the physiological and biochemical tests showed that NNPCN decreased the β-1,3-glucanase, malondialdehyde, and ATPase activities and nucleic acid leakage but increased the activity of nitrate reductase. The results of the reverse molecular docking showed that NNPCN could freely bind to target proteins such as β-1,3-glucanase, ABC transporter, and NADPH nitrate reductase, whereby NNPCN could bind to glucanase via van der Waals and electrostatic forces and to ABC transporter and NADPH nitrate reductase via hydrogen bonding. Conclusion: The mechanism via which NNPCN inhibits R. solani may be related to the cell wall structure, cell membrane damage, antioxidant activity, and metabolism.


Sign in / Sign up

Export Citation Format

Share Document