scholarly journals BH3 Mimetic Sensitivity of Colorectal Cancer Cell Lines in Correlation with Molecular Features Identifies Predictors of Response

2021 ◽  
Vol 22 (8) ◽  
pp. 3811
Author(s):  
Le Zhang ◽  
Prashanthi Ramesh ◽  
Maxime Steinmetz ◽  
Jan Paul Medema

Colorectal cancer (CRC) is a heterogeneous disease, which in part explains the differential response to chemotherapy observed in the clinic. BH3 mimetics, which target anti-apoptotic BCL-2 family members, have shown potential in the treatment of hematological malignancies and offer promise for the treatment of solid tumors as well. To gain a comprehensive understanding of the response to BH3 mimetics in CRC and the underlying molecular factors predicting sensitivity, we screened a panel of CRC cell lines with four BH3 mimetics targeting distinct anti-apoptotic BCL-2 proteins. Treatment with compounds alone and in combination revealed potent efficacy of combined MCL-1 and BCL-XL inhibition in inducing CRC cell death, irrespective of molecular features. Importantly, expression of the anti-apoptotic protein target of BH3 mimetics on its own did not predict sensitivity. However, the analysis did identify consensus molecular subtype (CMS) specific response patterns, such as higher resistance to single and combined BCL-2 and MCL-1 inhibition in CMS2 cell lines. Furthermore, analysis of mutation status revealed that KRAS mutant cell lines were more resistant to MCL-1 inhibition. Conclusively, we find that CRC cell lines presented with distinct responses to BH3 mimetics that can in part be predicted by their CMS profile and KRAS/BRAF mutations. Overall, almost all CRC lines share sensitivity in the nanomolar range to combined MCL-1 and BCL-XL targeting suggesting that this would be the preferred approach to target these cancers.

Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 788 ◽  
Author(s):  
Monika Stastna ◽  
Lucie Janeckova ◽  
Dusan Hrckulak ◽  
Vitezslav Kriz ◽  
Vladimir Korinek

Colorectal cancer (CRC) is a heterogeneous disease that includes both hereditary and sporadic types of tumors. Tumor initiation and growth is driven by mutational or epigenetic changes that alter the function or expression of multiple genes. The genes predominantly encode components of various intracellular signaling cascades. In this review, we present mouse intestinal cancer models that include alterations in the Wnt, Hippo, p53, epidermal growth factor (EGF), and transforming growth factor β (TGFβ) pathways; models of impaired DNA mismatch repair and chemically induced tumorigenesis are included. Based on their molecular biology characteristics and mutational and epigenetic status, human colorectal carcinomas were divided into four so-called consensus molecular subtype (CMS) groups. It was shown subsequently that the CMS classification system could be applied to various cell lines derived from intestinal tumors and tumor-derived organoids. Although the CMS system facilitates characterization of human CRC, individual mouse models were not assigned to some of the CMS groups. Thus, we also indicate the possible assignment of described animal models to the CMS group. This might be helpful for selection of a suitable mouse strain to study a particular type of CRC.


2018 ◽  
Author(s):  
Christian H. Klein ◽  
Dina C. Truxius ◽  
Holger A. Vogel ◽  
Jana Harizanova ◽  
Sandip Murarka ◽  
...  

Novelty and ImpactThe ‘undruggable’ KRas is a prevalent oncogene in CRC with poor prognosis. In hPDAC cells pharmacological targeting of PDEδ affects oncogenic KRas signaling, but it remained unclear whether this approach is transferable to other cancer cells. Here, we show that genetic and pharmacologic PDEδ inhibition also impedes the proliferation of oncogenic, but not wild-type KRas bearing CRC cells indicating that PDEδ inhibition is a specific tool for targeting growth of oncogenic KRas bearing CRC.AbstractRas proteins, most notably KRas, are prevalent oncogenes in human cancer. Plasma membrane localization and thereby signaling of KRas is regulated by the prenyl-binding protein PDEδ. Recently, we have reported the specific anti-proliferative effects of PDEδ inhibition in KRas-dependent human pancreatic ductal adenocarcinoma cell lines. Here, we investigated the proliferative dependence on the solubilizing activity of PDEδ of human colorectal cancer (CRC) cell lines with or without oncogenic KRas mutations. Our results show that genetic and pharmacologic interference with PDEδ specifically inhibits proliferation and survival of CRC cell lines harboring oncogenic KRas mutations whereas isogenic cell lines in which the KRas oncogene has been removed, or cell lines with oncogenic BRaf mutations or EGFR overexpression are not dependent on PDEδ. Pharmacological PDEδ inhibition is therefore a possible new avenue to target oncogenic KRas bearing CRC.


Oncotarget ◽  
2016 ◽  
Vol 7 (24) ◽  
pp. 36632-36644 ◽  
Author(s):  
Philip D. Dunne ◽  
Paul G. O’Reilly ◽  
Helen G. Coleman ◽  
Ronan T. Gray ◽  
Daniel B. Longley ◽  
...  

2018 ◽  
Author(s):  
Sha Cao ◽  
Wennan Chang ◽  
Changlin Wan ◽  
Yong Zhang ◽  
Jing Zhao ◽  
...  

In light of the marked differences in the intrinsic biological underpinnings and prognostic outcomes among different subtypes, Consensus Molecular Subtype (CMS) classification provides a new taxonomy of colorectal cancer (CRC) solely based on transcriptomics data and has been accepted as a standard rule for CRC stratification. Even though CMS was built on highly cancer relevant features, it suffers from limitations in capturing the promiscuous mechanisms in a clinical setting. There are at least two facts about using transcriptomic data for prognosis prediction: the engagement of genes or pathways that execute the clinical response pathway are highly dynamic and interactive with others; and a predefined patient stratification not only largely decrease the statistical analysis power, but also excludes the fact that clusters of patients that confer similar clinical outcomes may or may not overlap with a pre-defined subgrouping. To enable a flexible and prospective stratified exploration, we here present a novel computational framework based on bi-clustering aiming to identify gene regulatory mechanisms associated with various biological, clinical and drug-resistance features, with full recognition of the transiency of transcriptional regulation and complicacies of patients subgrouping with regards to different biological and clinical settings. Our analysis on multiple large scale CRC transcriptomics data sets using a bi-clustering based formulation suggests that the detected local low rank modules can not only generate new biological understanding coherent to CMS stratification, but also identify predictive markers for prognosis that are general to CRC or CMS dependent, as well as novel alternative drug resistance mechanisms. Our key results include: (1) a comprehensive annotation of the local low rank module landscape of CRC; (2) a mechanistic relationship between different clinical subtypes and outcomes, as well as their characteristic biological underpinnings, visible through a novel consensus map; and (3) a few (novel) resistance mechanisms of Oxaliplatin, 5-Fluorouracil, and the FOLFOX therapy are revealed, some of which are validated on independent datasets.


2020 ◽  
Vol 4 (5) ◽  
pp. 528-539
Author(s):  
Hiroshi Sawayama ◽  
Yuji Miyamoto ◽  
Katsuhiro Ogawa ◽  
Naoya Yoshida ◽  
Hideo Baba

Author(s):  
Federica Francescangeli ◽  
Paola Contavalli ◽  
Maria Laura De Angelis ◽  
Silvia Careccia ◽  
Michele Signore ◽  
...  

Abstract Background Quiescent/slow cycling cells have been identified in several tumors and correlated with therapy resistance. However, the features of chemoresistant populations and the molecular factors linking quiescence to chemoresistance are largely unknown. Methods A population of chemoresistant quiescent/slow cycling cells was isolated through PKH26 staining (which allows to separate cells on the basis of their proliferation rate) from colorectal cancer (CRC) xenografts and subjected to global gene expression and pathway activation analyses. Factors expressed by the quiescent/slow cycling population were analyzed through lentiviral overexpression approaches for their ability to induce a dormant chemoresistant state both in vitro and in mouse xenografts. The correlation between quiescence-associated factors, CRC consensus molecular subtype and cancer prognosis was analyzed in large patient datasets. Results Untreated colorectal tumors contain a population of quiescent/slow cycling cells with stem cell features (quiescent cancer stem cells, QCSCs) characterized by a predetermined mesenchymal-like chemoresistant phenotype. QCSCs expressed increased levels of ZEB2, a transcription factor involved in stem cell plasticity and epithelial-mesenchymal transition (EMT), and of antiapototic factors pCRAF and pASK1. ZEB2 overexpression upregulated pCRAF/pASK1 levels resulting in increased chemoresistance, enrichment of cells with stemness/EMT traits and proliferative slowdown of tumor xenografts. In parallel, chemotherapy treatment of tumor xenografts induced the prevalence of QCSCs with a stemness/EMT phenotype and activation of the ZEB2/pCRAF/pASK1 axis, resulting in a chemotherapy-unresponsive state. In CRC patients, increased ZEB2 levels correlated with worse relapse-free survival and were strongly associated to the consensus molecular subtype 4 (CMS4) characterized by dismal prognosis, decreased proliferative rates and upregulation of EMT genes. Conclusions These results show that chemotherapy-naive tumors contain a cell population characterized by a coordinated program of chemoresistance, quiescence, stemness and EMT. Such population becomes prevalent upon drug treatment and is responsible for chemotherapy resistance, thus representing a key target for more effective therapeutic approaches.


2014 ◽  
Vol 32 (3_suppl) ◽  
pp. 456-456 ◽  
Author(s):  
Ramon Salazar ◽  
Paul Roepman ◽  
Stefan M. Willems ◽  
Diede Brunen ◽  
Udo Kellner ◽  
...  

456 Background: Currently, most colorectal cancer (CRC) patients receive chemotherapy treatment, even though many patients do not benefit. Therefore, a better understanding of the biology is required to identify those patients who will benefit from chemotherapy and to find a more tailored therapy plan for all other patients. Methods: A molecular subtype classification was developed using full genome expression data of 188 stage I-IV CRC patients and validated in 543 stage II and III patients. Subtypes were correlated to clinical factors, prognosis and treatment benefit (stage III). To determine whether TGF-β signaling is elevated in the tumors, 78 patient biopsies were analyzed for p-SMAD2/3 expression using immunohistochemistry. To analyze the effect of TGF-β activation, we studied the effects of MED12 suppression in SKCO-1 CRC cells under treatment with Cisplatin, Oxaliplatin or 5-FU. Results: We developed a diagnostic test that allows the classification of colorectal cancer tumors into different intrinsic molecular subtypes (A-, B-, C-type). The heterogeneity of these subtypes is largely based on 3 biological hallmarks of the tumor: an epithelial-to-mesenchymal transition, deficiency in mismatch repair genes resulting in a high mutation frequency associated with MSI, and cellular proliferation. Especially the C-type (~15% of CRC tumors) is of clinical interest, as C-type patients have the worst outcome, a mesenchymal phenotype and show no benefit from chemotherapy treatment in our patient set or a public dataset. The C-type subgroup has elevated TGF-β signaling, as shown by TGF-beta and TGF-beta receptor over-expression (TGFB1, p=0.0012; TGFBR1, p=0.0005) and increased phopho-SMAD2/3 staining in the tumor cells (1.9-fold, p=0.0002). In cell line experiments, we show that up-regulation of TGF-β signaling by MED12 knockdown resulted in resistance against chemotherapy by preventing apoptosis. Conclusions: The molecular subtypes differ largely in prognosis and response to chemotherapy. A treatment strategy combining standard drugs with agents suppressing TGF-β signaling might benefit C-type patients.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Tae Won Kim ◽  
Hye Kyung Hong ◽  
Chung Lee ◽  
Sunmin Kim ◽  
Woo Yong Lee ◽  
...  

Abstract Background Young patients with colorectal cancer (CRC) exhibit poor prognoses compared to older patients due to the difficulty in early diagnosis and treatment. However, the underlying molecular characteristics are still unclear. Methods We conducted a comprehensive analysis of 49 CRC patients without hereditary CRC using the whole-exome and RNA sequencing with tumor and matched normal samples. A total of 594 TCGA samples and 4 patient-derived cells were utilized for validation. Results Consensus molecular subtype 4 (CMS4) (53.85%) and CMS2 (38.46%) were enriched in the young (≤ 40 years) and old (> 60 years) age groups, respectively. A CMS4-associated gene, platelet-derived growth factor receptor α (PDGFRA), was significantly upregulated in young patients with CRC (FC = 3.21, p = 0.0001) and was negatively correlated with age (p = 0.0001, R = − 0.526). Moreover, PDGFRA showed a positive co-expression with metastasis-related genes in young CRC patients. In vitro validation confirmed that young patient-derived cells (PDCs) showed an enriched expression of PDGFRA compared to old PDCs and a reduced proliferation rate by knockdown of PDGFRA. Furthermore, young CRC patients were more sensitive to regorafenib, a PDGFRA-targeting drug, than old CRC patients. Conclusions Our study suggests that CRC in young patients is associated with CMS4 and PDGFRA. In addition, PDGFRA may serve potential of novel therapeutic strategies and represent a predictive biomarker of response to regorafenib for young CRC patients.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1947-1947
Author(s):  
Malte F Huelsemann ◽  
Michaela Patz ◽  
Laura Beckmann ◽  
Kerstin Brinkmann ◽  
Teresa Otto ◽  
...  

Abstract Background: CLL patients frequently suffer relapse after an initially successful chemotherapy. This distinct resistance towards chemotherapy is thought to be caused by microenvironmental stimulation. Within the tumor microenvironment (TME) cells are not only stimulated by well-known external stimuli like CD40 ligand (CD40L) or activation of the B cell receptor (BCR), but are also exposed to hypoxia, which was found in the bone marrow and lymphatic tissue. Despite the known importance of hypoxia in solid tumors, its impact on survival and treatment response in CLL is still poorly understood. Methods: We have established a novel in vitro model for the CLL microenvironment, which considers both the external stimulation by CD40L and the hypoxic oxygen levels (1% O2). Treatment efficacy of different drugs in normoxia (21% O2) and hypoxia were determined by AnnexinV/7-AAD staining and subsequent FACS analysis. The underlying molecular mechanisms were analyzed via qRT-PCR and immunoblot. Furthermore B-cell lines Raji, Ramos and Mec-1 were continuously exposed to increasing concentrations of fludarabine or the BH3 mimetic ABT-737. After establishment of resistance the molecular adaptation was assessed and correlated to the changes induced by hypoxia. Results: Hypoxia is known to protect solid cancers from chemotherapy. In our model we made similar observations for CLL, since sensitivity to the classical DNA-targeting drugs fludarabine and bendamustine was reduced under hypoxic conditions. Interestingly, the tyrosine kinase inhibitor ibrutinib did not benefit from hypoxia either. However, this resistance was overcome by the mitochondria-targeting BH3 mimetics ABT-199 and ABT-737, whose effect was pronounced under hypoxia. We reveal that this effect was caused by an uncoupling of major signaling pathways. Under hypoxic conditions the activity of Akt, ERK1/2 and NFκB was reduced, while p38 MAPK became hyperphosphorylated. Phospho-p38 (pp38) downregulated Mcl-1 levels, which are the main regulator of sensitivity towards BH3 mimetics. Despite the known heterogeneity in between CLL patients this effect was found in most samples analyzed. The functional importance was underlined by the observation that pharmacological inhibition of p38 MAPK could reconstitute Mcl-1 levels and thereby resistance in hypoxia. The relevance of the pp38-Mcl-1 axis for ABT efficacy was emphasized by findings in B-cell lines with acquired resistance. Each ABT-resistant clone of the three tested cell lines induced p38 activity and decreased Mcl-1 levels. In contrast, in the fludarabine-resistant clones the pp38-Mcl-1 axis was not altered. Conclusion: These are the first experiments providing evidence that hypoxia has a crucial impact on survival and response to chemotherapy in CLL. We show that hypoxia renders CLL cells resistant to classical DNA-targeting agents, while the small molecules ABT-199 and ABT-737, which specifically target mitochondria, efficiently eradicate CLL cells within the microenvironment. Furthermore, we identified the pp38-Mcl-1 axis to be a major determinant of sensitivity to these BH3 mimetics, which warrants further evaluation of p38 as a novel biomarker for prediction of sensitivity to BH3 mimetics. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document