scholarly journals Genetics and Inflammation in Endometriosis: Improving Knowledge for Development of New Pharmacological Strategies

2021 ◽  
Vol 22 (16) ◽  
pp. 9033
Author(s):  
Elisa Giacomini ◽  
Sabrina Minetto ◽  
Letizia Li Li Piani ◽  
Luca Pagliardini ◽  
Edgardo Somigliana ◽  
...  

According to a rich body of literature, immune cell dysfunctions, both locally and systemically, and an inflammatory environment characterize all forms of endometriosis. Alterations in transcripts and proteins involved in the recruitment of immune cells, in the interaction between cytokines and their receptors, cellular adhesion and apoptosis have been demonstrated in endometriotic lesions. The objective of this narrative review is to provide an overview of the components and mechanisms at the intersection between inflammation and genetics that may constitute vanguard therapeutic approaches in endometriosis. The GWAS technology and pathway-based analysis highlighted the role of the MAPK and the WNT/β-catenin cascades in the pathogenesis of endometriosis. These signaling pathways have been suggested to interfere with the disease establishment via several mechanisms, including apoptosis, migration and angiogenesis. Extracellular vesicle-associated molecules may be not only interesting to explain some aspects of endometriosis progression, but they may also serve as therapeutic regimens per se. Immune/inflammatory dysfunctions have always represented attractive therapeutic targets in endometriosis. These would be even more interesting if genetic evidence supported the involvement of functional pathways at the basis of these alterations. Targeting these dysfunctions through next-generation inhibitors can constitute a therapeutic alternative for endometriosis.

2021 ◽  
Vol 116 (1) ◽  
Author(s):  
Marius Keller ◽  
Valbona Mirakaj ◽  
Michael Koeppen ◽  
Peter Rosenberger

AbstractCardiovascular pathologies are often induced by inflammation. The associated changes in the inflammatory response influence vascular endothelial biology; they complicate the extent of ischaemia and reperfusion injury, direct the migration of immune competent cells and activate platelets. The initiation and progression of inflammation is regulated by the classical paradigm through the system of cytokines and chemokines. Therapeutic approaches have previously used this knowledge to control the extent of cardiovascular changes with varying degrees of success. Neuronal guidance proteins (NGPs) have emerged in recent years and have been shown to be significantly involved in the control of tissue inflammation and the mechanisms of immune cell activation. Therefore, proteins of this class might be used in the future as targets to control the extent of inflammation in the cardiovascular system. In this review, we describe the role of NGPs during cardiovascular inflammation and highlight potential therapeutic options that could be explored in the future.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 823
Author(s):  
Jian Tan ◽  
Duan Ni ◽  
Rosilene V. Ribeiro ◽  
Gabriela V. Pinget ◽  
Laurence Macia

Cell survival, proliferation and function are energy-demanding processes, fuelled by different metabolic pathways. Immune cells like any other cells will adapt their energy production to their function with specific metabolic pathways characteristic of resting, inflammatory or anti-inflammatory cells. This concept of immunometabolism is revolutionising the field of immunology, opening the gates for novel therapeutic approaches aimed at altering immune responses through immune metabolic manipulations. The first part of this review will give an extensive overview on the metabolic pathways used by immune cells. Diet is a major source of energy, providing substrates to fuel these different metabolic pathways. Protein, lipid and carbohydrate composition as well as food additives can thus shape the immune response particularly in the gut, the first immune point of contact with food antigens and gastrointestinal tract pathogens. How diet composition might affect gut immunometabolism and its impact on diseases will also be discussed. Finally, the food ingested by the host is also a source of energy for the micro-organisms inhabiting the gut lumen particularly in the colon. The by-products released through the processing of specific nutrients by gut bacteria also influence immune cell activity and differentiation. How bacterial metabolites influence gut immunometabolism will be covered in the third part of this review. This notion of immunometabolism and immune function is recent and a deeper understanding of how lifestyle might influence gut immunometabolism is key to prevent or treat diseases.


Open Biology ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 170006 ◽  
Author(s):  
B. Calì ◽  
B. Molon ◽  
A. Viola

Host immunity plays a central and complex role in dictating tumour progression. Solid tumours are commonly infiltrated by a large number of immune cells that dynamically interact with the surrounding microenvironment. At first, innate and adaptive immune cells successfully cooperate to eradicate microcolonies of transformed cells. Concomitantly, surviving tumour clones start to proliferate and harness immune responses by specifically hijacking anti-tumour effector mechanisms and fostering the accumulation of immunosuppressive immune cell subsets at the tumour site. This pliable interplay between immune and malignant cells is a relentless process that has been concisely organized in three different phases: elimination, equilibrium and escape. In this review, we aim to depict the distinct immune cell subsets and immune-mediated responses characterizing the tumour landscape throughout the three interconnected phases. Importantly, the identification of key immune players and molecules involved in the dynamic crosstalk between tumour and immune system has been crucial for the introduction of reliable prognostic factors and effective therapeutic protocols against cancers.


2019 ◽  
Author(s):  
Aurélie Bouteau ◽  
Botond Z. Igyártó

AbstractHuLangerin-Cre-YFPf/f mice were generated to specifically mark a subset of antigen presenting immune cells, called Langerhans cells (LCs). During histological characterization of these mice, we found that, in addition to LCs an uncharacterized cell population in the central nervous system (CNS) also expressed YFP. In this study, we found that the CNS YFP+ cells were negative for microglia and astrocyte markers, but they expressed mature neuronal marker NeuN and showed neuronal localization/morphology. Thus, these mice might be used to study the ontogeny, migration and the role of a subset of CNS neurons.


Metabolites ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 372 ◽  
Author(s):  
Karl J. Harber ◽  
Kyra E. de Goede ◽  
Sanne G. S. Verberk ◽  
Elisa Meinster ◽  
Helga E. de Vries ◽  
...  

Immunometabolism revealed the crucial role of cellular metabolism in controlling immune cell phenotype and functions. Macrophages, key immune cells that support progression of numerous inflammatory diseases, have been well described as undergoing vast metabolic rewiring upon activation. The immunometabolite succinate particularly gained a lot of attention and emerged as a crucial regulator of macrophage responses and inflammation. Succinate was originally described as a metabolite that supports inflammation via distinct routes. Recently, studies have indicated that succinate and its receptor SUCNR1 can suppress immune responses as well. These apparent contradictory effects might be due to specific experimental settings and particularly the use of distinct succinate forms. We therefore compared the phenotypic and functional effects of distinct succinate forms and receptor mouse models that were previously used for studying succinate immunomodulation. Here, we show that succinate can suppress secretion of inflammatory mediators IL-6, tumor necrosis factor (TNF) and nitric oxide (NO), as well as inhibit Il1b mRNA expression of inflammatory macrophages in a SUCNR1-independent manner. We also observed that macrophage SUCNR1 deficiency led to an enhanced inflammatory response without addition of exogenous succinate. While our study does not reveal new mechanistic insights into how succinate elicits different inflammatory responses, it does indicate that the inflammatory effects of succinate and its receptor SUCNR1 in macrophages are clearly context dependent.


2019 ◽  
Vol 116 (14) ◽  
pp. 2226-2238 ◽  
Author(s):  
Tetsuo Horimatsu ◽  
Andra L Blomkalns ◽  
Mourad Ogbi ◽  
Mary Moses ◽  
David Kim ◽  
...  

Abstract Aims Chronic adventitial and medial infiltration of immune cells play an important role in the pathogenesis of abdominal aortic aneurysms (AAAs). Nicotinic acid (niacin) was shown to inhibit atherosclerosis by activating the anti-inflammatory G protein-coupled receptor GPR109A [also known as hydroxycarboxylic acid receptor 2 (HCA2)] expressed on immune cells, blunting immune activation and adventitial inflammatory cell infiltration. Here, we investigated the role of niacin and GPR109A in regulating AAA formation. Methods and results Mice were supplemented with niacin or nicotinamide, and AAA was induced by angiotensin II (AngII) infusion or calcium chloride (CaCl2) application. Niacin markedly reduced AAA formation in both AngII and CaCl2 models, diminishing adventitial immune cell infiltration, concomitant inflammatory responses, and matrix degradation. Unexpectedly, GPR109A gene deletion did not abrogate the protective effects of niacin against AAA formation, suggesting GPR109A-independent mechanisms. Interestingly, nicotinamide, which does not activate GPR109A, also inhibited AAA formation and phenocopied the effects of niacin. Mechanistically, both niacin and nicotinamide supplementation increased nicotinamide adenine dinucleotide (NAD+) levels and NAD+-dependent Sirt1 activity, which were reduced in AAA tissues. Furthermore, pharmacological inhibition of Sirt1 abrogated the protective effect of nicotinamide against AAA formation. Conclusion Niacin protects against AAA formation independent of GPR109A, most likely by serving as an NAD+ precursor. Supplementation of NAD+ using nicotinamide-related biomolecules may represent an effective and well-tolerated approach to preventing or treating AAA.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 269 ◽  
Author(s):  
Imran Ahmad ◽  
Araceli Valverde ◽  
Fayek Ahmad ◽  
Afsar Raza Naqvi

Long noncoding RNA (lncRNA) are a class of endogenous, non-protein coding RNAs that are increasingly being associated with various cellular functions and diseases. Yet, despite their ubiquity and abundance, only a minute fraction of these molecules has an assigned function. LncRNAs show tissue-, cell-, and developmental stage-specific expression, and are differentially expressed under physiological or pathological conditions. The role of lncRNAs in the lineage commitment of immune cells and shaping immune responses is becoming evident. Myeloid cells and lymphoid cells are two major classes of immune systems that work in concert to initiate and amplify innate and adaptive immunity in vertebrates. In this review, we provide mechanistic roles of lncRNA through which these noncoding RNAs can directly participate in the differentiation, polarization, and activation of myeloid (monocyte, macrophage, and dendritic cells) and lymphoid cells (T cells, B cells, and NK cells). While our knowledge on the role of lncRNA in immune cell differentiation and function has improved in the past decade, further studies are required to unravel the biological role of lncRNAs and identify novel mechanisms of lncRNA functions in immune cells. Harnessing the regulatory potential of lncRNAs can provide novel diagnostic and therapeutic targets in treating immune cell related diseases.


2014 ◽  
Author(s):  
Juanjuan Zhao ◽  
Yongju Li ◽  
Yan Hu ◽  
Chao Chen ◽  
Ya Zhou ◽  
...  

Backgroud: CCR6+ CD4+ regulatory T cells (CCR6+Tregs), a distinct Tregs subset, played an important role in various immune diseases. Recent evidence showed that microRNAs (miRNAs) are vital regulators in the function of immune cells. However, the potential role of miRNAs in the function of CCR6+Tregs remains largely unknown. In this study, we detected the expression profile of miRNAs in CCR6+ Tregs. Materials and Methods: The expression profile of miRNAs as well as genes in CCR6+Tregs or CCR6-Tregs from Balb/c mice were detected by microarray. The signaling pathways were analyzed using Keggs pathway library. Results: We found that there were 58 miRNAs significantly upregulated and 62 downregulated up to 2 fold in CCR6+Tregs compared with CCR6-Tregs. Moreover, 1391 genes were observed with 3 fold change and 20 signaling pathways were enriched using Keggs pathway library. Conclusion: The present data firstly showed CCR6+Tregs expressed specific miRNAs pattern, which provide an insight into the role of miRNAs in the biological function of distinct Tregs subsets.


2014 ◽  
Author(s):  
Juanjuan Zhao ◽  
Yongju Li ◽  
Yan Hu ◽  
Chao Chen ◽  
Ya Zhou ◽  
...  

Backgroud: CCR6+ CD4+ regulatory T cells (CCR6+Tregs), a distinct Tregs subset, played an important role in various immune diseases. Recent evidence showed that microRNAs (miRNAs) are vital regulators in the function of immune cells. However, the potential role of miRNAs in the function of CCR6+Tregs remains largely unknown. In this study, we detected the expression profile of miRNAs in CCR6+ Tregs. Materials and Methods: The expression profile of miRNAs as well as genes in CCR6+Tregs or CCR6-Tregs from Balb/c mice were detected by microarray. The signaling pathways were analyzed using Keggs pathway library. Results: We found that there were 58 miRNAs significantly upregulated and 62 downregulated up to 2 fold in CCR6+Tregs compared with CCR6-Tregs. Moreover, 1391 genes were observed with 3 fold change and 20 signaling pathways were enriched using Keggs pathway library. Conclusion: The present data firstly showed CCR6+Tregs expressed specific miRNAs pattern, which provide an insight into the role of miRNAs in the biological function of distinct Tregs subsets.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yong Chen ◽  
Fada Xia ◽  
Bo Jiang ◽  
Wenlong Wang ◽  
Xinying Li

Background: Epigenetic regulation, including DNA methylation, plays a major role in shaping the identity and function of immune cells. Innate and adaptive immune cells recruited into tumor tissues contribute to the formation of the tumor immune microenvironment (TIME), which is closely involved in tumor progression in breast cancer (BC). However, the specific methylation signatures of immune cells have not been thoroughly investigated yet. Additionally, it remains unknown whether immune cells-specific methylation signatures can identify subgroups and stratify the prognosis of BC patients.Methods: DNA methylation profiles of six immune cell types from eight datasets downloaded from the Gene Expression Omnibus were collected to identify immune cell-specific hypermethylation signatures (IC-SHMSs). Univariate and multivariate cox regression analyses were performed using BC data obtained from The Cancer Genome Atlas to identify the prognostic value of these IC-SHMSs. An unsupervised clustering analysis of the IC-SHMSs with prognostic value was performed to categorize BC patients into subgroups. Multiple Cox proportional hazard models were constructed to explore the role of IC-SHMSs and their relationship to clinical characteristics in the risk stratification of BC patients. Integrated discrimination improvement (IDI) was performed to determine whether the improvement of IC-SHMSs on clinical characteristics in risk stratification was statistically significant.Results: A total of 655 IC-SHMSs of six immune cell types were identified. Thirty of them had prognostic value, and 10 showed independent prognostic value. Four subgroups of BC patients, which showed significant heterogeneity in terms of survival prognosis and immune landscape, were identified. The model incorporating nine IC-SHMSs showed similar survival prediction accuracy as the clinical model incorporating age and TNM stage [3-year area under the curve (AUC): 0.793 vs. 0.785; 5-year AUC: 0.735 vs. 0.761]. Adding the IC-SHMSs to the clinical model significantly improved its prediction accuracy in risk stratification (3-year AUC: 0.897; 5-year AUC: 0.856). The results of IDI validated the statistical significance of the improvement (p < 0.05).Conclusions: Our study suggests that IC-SHMSs may serve as signatures of classification and risk stratification in BC. Our findings provide new insights into epigenetic signatures, which may help improve subgroup identification, risk stratification, and treatment management.


Sign in / Sign up

Export Citation Format

Share Document