scholarly journals Combining Biocompatible and Biodegradable Scaffolds and Cold Atmospheric Plasma for Chronic Wound Regeneration

2021 ◽  
Vol 22 (17) ◽  
pp. 9199
Author(s):  
Steffen Emmert ◽  
Sven Pantermehl ◽  
Aenne Foth ◽  
Janine Waletzko-Hellwig ◽  
Georg Hellwig ◽  
...  

Skin regeneration is a quite complex process. Epidermal differentiation alone takes about 30 days and is highly regulated. Wounds, especially chronic wounds, affect 2% to 3% of the elderly population and comprise a heterogeneous group of diseases. The prevailing reasons to develop skin wounds include venous and/or arterial circulatory disorders, diabetes, or constant pressure to the skin (decubitus). The hallmarks of modern wound treatment include debridement of dead tissue, disinfection, wound dressings that keep the wound moist but still allow air exchange, and compression bandages. Despite all these efforts there is still a huge treatment resistance and wounds will not heal. This calls for new and more efficient treatment options in combination with novel biocompatible skin scaffolds. Cold atmospheric pressure plasma (CAP) is such an innovative addition to the treatment armamentarium. In one CAP application, antimicrobial effects, wound acidification, enhanced microcirculations and cell stimulation can be achieved. It is evident that CAP treatment, in combination with novel bioengineered, biocompatible and biodegradable electrospun scaffolds, has the potential of fostering wound healing by promoting remodeling and epithelialization along such temporarily applied skin replacement scaffolds.

2020 ◽  
Vol 26 (6) ◽  
pp. 621-641 ◽  
Author(s):  
Fátima García-Villén ◽  
Iane M.S. Souza ◽  
Raquel de Melo Barbosa ◽  
Ana Borrego-Sánchez ◽  
Rita Sánchez-Espejo ◽  
...  

Background: One of the major clinical challenges is to achieve a rapid and efficient treatment of complex chronic wounds. Nowadays, most wound dressings currently available are unable to find a solution the challenges of resistance to bacterial infection, protein adsorption and increased levels of exudates. Natural inorganic ingredients (clay minerals, metal cations, zeolites, etc) could be the key to solve the problem satisfactorily. Some of these materials have shown biocompatibility and ability to enhance cell adhesion, proliferation and cellular differentiation and uptake. Besides, some natural inorganic ingredients effectively retain drugs, allowing the design of drug delivery matrices. Objective: possibilities of natural inorganic ingredients in wound healing treatments have been reviewed, the following sections have been included: 1. Introduction 2. Functions of Inorganic Ingredients in wound healing 2.1. Antimicrobial effects 2.2. Hemostatic effects 3. Clay minerals for wound healing 3.1. Clay minerals 3.2. Clay mineral semisolid formulations 3.3. Clay/polymer composites and nanocomposites 3.4. Clay minerals in wound dressings 4. Other inorganic materials for wound healing 4.1. Zeolites 4.2. Silica and other silicates 4.3. Other minerals 4.4. Transition metals 5. Conclusion Conclusion: inorganic ingredients possess useful features in the development of chronic wounds advanced treatments. They improve physical (mechanical resistance and water vapor transmission), chemical (release of drugs, hemostasis and/or adsorption of exudates and moisture) and biological (antimicrobial effects and improvement of healing) properties of wound dressings. In summary, inorganic ingredients have proved to be a promising and easily accessible products in the treatment of wounds and, more importantly, chronic wounds.


Author(s):  
Elizabeth Gianino ◽  
Craig Miller ◽  
Jordon Gilmore

Given their severity and non-healing nature, diabetic chronic wounds are a significant concern to the 30.3 million Americans diagnosed with diabetes mellitus (2015). Peripheral arterial diseases, neuropathy, and infection contribute to the development of these wounds, which lead to an increased incidence of lower extremity amputations. Early recognition, debridement, offloading, and controlling infection are imperative for timely treatment. However, wound characterization and treatment are highly subjective and based largely on the experience of the treating clinician. Many wound dressings have been designed to address particular clinical presentations, but a prescriptive method is lacking for identifying the particular state of chronic, non-healing wounds. The authors suggest that recent developments in wound dressings and biosensing may allow for the quantitative, real-time representation of the wound environment, including exudate levels, pathogen concentrations, and tissue regeneration. Development of such sensing capability could enable more strategic, personalized care at the onset of ulceration and limit the infection leading to amputation. This review presents an overview of the pathophysiology of diabetic chronic wounds, a brief summary of biomaterial wound dressing treatment options, and biosensor development for biomarker sensing in the wound environment.


Author(s):  
Davide Vincenzo Verdolino ◽  
Helen A. Thomason ◽  
Andrea Fotticchia ◽  
Sarah Cartmell

Chronic wounds represent an economic burden to healthcare systems worldwide and a societal burden to patients, deeply impacting their quality of life. The incidence of recalcitrant wounds has been steadily increasing since the population more susceptible, the elderly and diabetic, are rapidly growing. Chronic wounds are characterised by a delayed wound healing process that takes longer to heal under standard of care than acute (i.e. healthy) wounds. Two of the most common problems associated with chronic wounds are inflammation and infection, with the latter usually exacerbating the former. With this in mind, researchers and wound care companies have developed and marketed a wide variety of wound dressings presenting different compositions but all aimed at promoting healing. This makes it harder for physicians to choose the correct therapy, especially given a lack of public quantitative data to support the manufacturers’ claims. This review aims at giving a brief introduction to the clinical need for chronic wound dressings, focusing on inflammation and evaluating how bio-derived and synthetic dressings may control excess inflammation and promote healing.


1985 ◽  
Vol 1 (2) ◽  
pp. 407-416
Author(s):  
Raleigh R. White ◽  
Charles N. Verheyden ◽  
Dennis J. Lynch
Keyword(s):  

2016 ◽  
Vol 21 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Mihaela Georgescu ◽  
Mariana Chifiriuc ◽  
Luminita Marutescu ◽  
Irina Gheorghe ◽  
Veronica Lazar ◽  
...  

Author(s):  
Seoul-Hee Nam ◽  
Byul Bo Ra Choi ◽  
Gyoo-Cheon Kim

Various light sources have been applied to enhance the bleaching effect. This study was to identify the histological evaluation in oral soft tissues, as well as tooth color change after tooth bleaching by nonthermal atmospheric pressure plasma (NAPP). Nine New Zealand adult female rabbits were randomly divided into three groups (n = 3): group 1 received no treatment; group 2 was treated with NAPP and 15% carbamide peroxide (CP), which contains 5.4% H2O2, and group 3 was treated with 15% CP without NAPP. Color change (ΔE) was measured using the Shade Eye NCC colorimeter. Animals were euthanized one day later to analyze the histological responses occurring in oral soft tissues, including pulp, gingiva, tongue, buccal mucosa, and hard and soft palates. Changes in all samples were analyzed by hematoxylin and eosin staining and Masson’s trichrome. Teeth treated with plasma showed higher ΔE than that obtained with bleaching agents alone. Overall, the histological characteristics observed no appreciable changes. The combinational treatment of plasma had not indicated inflammatory responses as well as thermal damages. NAPP did not cause histological damage in oral soft tissues during tooth bleaching. We suggest that NAPP could be a novel alternative energy source to conventional light sources for tooth bleaching.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2104
Author(s):  
Sibusiso Alven ◽  
Blessing Atim Aderibigbe

The management of chronic wounds is challenging. The factors that impede wound healing include malnutrition, diseases (such as diabetes, cancer), and bacterial infection. Most of the presently utilized wound dressing materials suffer from severe limitations, including poor antibacterial and mechanical properties. Wound dressings formulated from the combination of biopolymers and synthetic polymers (i.e., poly (vinyl alcohol) or poly (ε-caprolactone) display interesting properties, including good biocompatibility, improved biodegradation, good mechanical properties and antimicrobial effects, promote tissue regeneration, etc. Formulation of these wound dressings via electrospinning technique is cost-effective, useful for uniform and continuous nanofibers with controllable pore structure, high porosity, excellent swelling capacity, good gaseous exchange, excellent cellular adhesion, and show a good capability to provide moisture and warmth environment for the accelerated wound healing process. Based on the above-mentioned outstanding properties of nanofibers and the unique properties of hybrid wound dressings prepared from poly (vinyl alcohol) and poly (ε-caprolactone), this review reports the in vitro and in vivo outcomes of the reported hybrid nanofibers.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2090
Author(s):  
Dimitri Kasakovski ◽  
Marina Skrygan ◽  
Thilo Gambichler ◽  
Laura Susok

To date, the skin remains the most common cancer site among Caucasians in the western world. The complex, layered structure of human skin harbors a heterogenous population of specialized cells. Each cell type residing in the skin potentially gives rise to a variety of cancers, including non-melanoma skin cancer, sarcoma, and cutaneous melanoma. Cutaneous melanoma is known to exacerbate and metastasize if not detected at an early stage, with mutant melanomas tending to acquire treatment resistance over time. The intricacy of melanoma thus necessitates diverse and patient-centered targeted treatment options. In addition to classical treatment through surgical intervention and radio- or chemotherapy, several systemic and intratumoral immunomodulators, pharmacological agents (e.g., targeted therapies), and oncolytic viruses are trialed or have been recently approved. Moreover, utilizing combinations of immune checkpoint blockade with targeted, oncolytic, or anti-angiogenic approaches for patients with advanced disease progression are promising approaches currently under pre-clinical and clinical investigation. In this review, we summarize the current ‘state-of-the-art’ as well as discuss emerging agents and regimens in cutaneous melanoma treatment.


2021 ◽  
Vol 22 (13) ◽  
pp. 6781
Author(s):  
Anna Kirstein ◽  
Daniela Schilling ◽  
Stephanie E. Combs ◽  
Thomas E. Schmid

Background: Treatment resistance of glioblastoma multiforme to chemo- and radiotherapy remains a challenge yet to overcome. In particular, the O6-methylguanine-DNA-methyltransferase (MGMT) promoter unmethylated patients have only little benefit from chemotherapy treatment using temozolomide since MGMT counteracts its therapeutic efficacy. Therefore, new treatment options in radiotherapy need to be developed to inhibit MGMT and increase radiotherapy response. Methods: Lomeguatrib, a highly specific MGMT inhibitor, was used to inactivate MGMT protein in vitro. Radiosensitivity of established human glioblastoma multiforme cell lines in combination with lomeguatrib was investigated using the clonogenic survival assay. Inhibition of MGMT was analyzed using Western Blot. Cell cycle distribution and apoptosis were investigated to determine the effects of lomeguatrib alone as well as in combination with ionizing radiation. Results: Lomeguatrib significantly decreased MGMT protein and reduced radiation-induced G2/M arrest. A radiosensitizing effect of lomeguatrib was observed when administered at 1 µM and increased radioresistance at 20 µM. Conclusion: Low concentrations of lomeguatrib elicit radiosensitization, while high concentrations mediate a radioprotective effect.


2021 ◽  
Vol 11 (6) ◽  
pp. 2534
Author(s):  
Henrike Rebl ◽  
Claudia Bergemann ◽  
Sebastian Rakers ◽  
Barbara Nebe ◽  
Alexander Rebl

The present study provides the fundamental results for the treatment of marine organisms with cold atmospheric pressure plasma. In farmed fish, skin lesions may occur as a result of intensive fish farming. Cold atmospheric plasma offers promising medical potential in wound healing processes. Since the underlying plasma-mediated mechanisms at the physical and cellular level are yet to be fully understood, we investigated the sensitivity of three fish cell lines to plasma treatment in comparison with mammalian cells. We varied (I) cell density, (II) culture medium, and (III) pyruvate concentration in the medium as experimental parameters. Depending on the experimental setup, the plasma treatment affected the viability of the different cell lines to varying degrees. We conclude that it is mandatory to use similar cell densities and an identical medium, or at least a medium with identical antioxidant capacity, when studying plasma effects on different cell lines. Altogether, fish cells showed a higher sensitivity towards plasma treatment than mammalian cells in most of our setups. These results should increase the understanding of the future treatment of fish.


Sign in / Sign up

Export Citation Format

Share Document