Natural Inorganic Ingredients in Wound Healing

2020 ◽  
Vol 26 (6) ◽  
pp. 621-641 ◽  
Author(s):  
Fátima García-Villén ◽  
Iane M.S. Souza ◽  
Raquel de Melo Barbosa ◽  
Ana Borrego-Sánchez ◽  
Rita Sánchez-Espejo ◽  
...  

Background: One of the major clinical challenges is to achieve a rapid and efficient treatment of complex chronic wounds. Nowadays, most wound dressings currently available are unable to find a solution the challenges of resistance to bacterial infection, protein adsorption and increased levels of exudates. Natural inorganic ingredients (clay minerals, metal cations, zeolites, etc) could be the key to solve the problem satisfactorily. Some of these materials have shown biocompatibility and ability to enhance cell adhesion, proliferation and cellular differentiation and uptake. Besides, some natural inorganic ingredients effectively retain drugs, allowing the design of drug delivery matrices. Objective: possibilities of natural inorganic ingredients in wound healing treatments have been reviewed, the following sections have been included: 1. Introduction 2. Functions of Inorganic Ingredients in wound healing 2.1. Antimicrobial effects 2.2. Hemostatic effects 3. Clay minerals for wound healing 3.1. Clay minerals 3.2. Clay mineral semisolid formulations 3.3. Clay/polymer composites and nanocomposites 3.4. Clay minerals in wound dressings 4. Other inorganic materials for wound healing 4.1. Zeolites 4.2. Silica and other silicates 4.3. Other minerals 4.4. Transition metals 5. Conclusion Conclusion: inorganic ingredients possess useful features in the development of chronic wounds advanced treatments. They improve physical (mechanical resistance and water vapor transmission), chemical (release of drugs, hemostasis and/or adsorption of exudates and moisture) and biological (antimicrobial effects and improvement of healing) properties of wound dressings. In summary, inorganic ingredients have proved to be a promising and easily accessible products in the treatment of wounds and, more importantly, chronic wounds.

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2104
Author(s):  
Sibusiso Alven ◽  
Blessing Atim Aderibigbe

The management of chronic wounds is challenging. The factors that impede wound healing include malnutrition, diseases (such as diabetes, cancer), and bacterial infection. Most of the presently utilized wound dressing materials suffer from severe limitations, including poor antibacterial and mechanical properties. Wound dressings formulated from the combination of biopolymers and synthetic polymers (i.e., poly (vinyl alcohol) or poly (ε-caprolactone) display interesting properties, including good biocompatibility, improved biodegradation, good mechanical properties and antimicrobial effects, promote tissue regeneration, etc. Formulation of these wound dressings via electrospinning technique is cost-effective, useful for uniform and continuous nanofibers with controllable pore structure, high porosity, excellent swelling capacity, good gaseous exchange, excellent cellular adhesion, and show a good capability to provide moisture and warmth environment for the accelerated wound healing process. Based on the above-mentioned outstanding properties of nanofibers and the unique properties of hybrid wound dressings prepared from poly (vinyl alcohol) and poly (ε-caprolactone), this review reports the in vitro and in vivo outcomes of the reported hybrid nanofibers.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 961
Author(s):  
Sibusiso Alven ◽  
Vuyolwethu Khwaza ◽  
Opeoluwa O. Oyedeji ◽  
Blessing A. Aderibigbe

The treatment of wounds is one challenging biomedical field due to delayed wound healing common in chronic wounds. Several factors delay wound healing, including microbial infections, malnutrition, underlying physiological conditions, etc. Most of the currently used wound dressing materials suffer from poor antimicrobial properties, poor biodegradability and biocompatibility, and weak mechanical performance. Plant extracts, such as Aloe vera, have attracted significant attention in wound management because of their interesting biological properties. Aloe vera is composed of essential constituents beneficial for the wound healing process, such as amino acids, vitamins C and E, and zinc. Aloe vera influences numerous factors that are involved in wound healing and stimulates accelerated healing. This review reports the therapeutic outcomes of aloe vera extract-loaded polymer-based scaffolds in wound management.


2021 ◽  
Vol 18 ◽  
Author(s):  
Xinchi Feng ◽  
Jinsong Hao

: Chronic wounds remain a significant public problem and the development of wound treatments has been a research focus for the past few decades. Despite advances in the products derived from endogenous substances involved in a wound healing process (e.g. growth factors, stem cells, and extracellular matrix), effective and safe wound therapeutics are still limited. There is an unmet need to develop new therapeutics. Various new pathways and targets have been identified and could become a molecular target in designing novel wound agents. Importantly, many existing drugs that target these newly identified pathways could be repositioned for wound therapy, which will facilitate fast translation of research findings to clinical applications. This review discusses the newly identified pathways/targets and their potential uses in the development of wound therapeutics. Some herbs and amphibian skins have been traditionally used for wound repairs and their active ingredients have been found to act in these new pathways. Hence, screening these natural products for novel wound therapeutics remains a viable approach. The outcomes of wound care using natural wound therapeutics could be improved if we can better understand their cellular and molecular mechanisms and fabricate them in appropriate formulations, such as using novel wound dressings and nano-engineered materials. Therefore, we also provide an update on the advances in the wound therapeutics from natural sources. Overall, this review offers new insights into novel wound therapeutics.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 702
Author(s):  
Seyyed-Mojtaba Mousavi ◽  
Zohre Mousavi Nejad ◽  
Seyyed Alireza Hashemi ◽  
Marjan Salari ◽  
Ahmad Gholami ◽  
...  

Despite the advances that have been achieved in developing wound dressings to date, wound healing still remains a challenge in the healthcare system. None of the wound dressings currently used clinically can mimic all the properties of normal and healthy skin. Electrospinning has gained remarkable attention in wound healing applications because of its excellent ability to form nanostructures similar to natural extracellular matrix (ECM). Electrospun dressing accelerates the wound healing process by transferring drugs or active agents to the wound site sooner. This review provides a concise overview of the recent developments in bioactive electrospun dressings, which are effective in treating acute and chronic wounds and can successfully heal the wound. We also discuss bioactive agents used to incorporate electrospun wound dressings to improve their therapeutic potential in wound healing. In addition, here we present commercial dressings loaded with bioactive agents with a comparison between their features and capabilities. Furthermore, we discuss challenges and promises and offer suggestions for future research on bioactive agent-loaded nanofiber membranes to guide future researchers in designing more effective dressing for wound healing and skin regeneration.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10232
Author(s):  
Muniba Tariq ◽  
Hafiz Muhammad Tahir ◽  
Samima Asad Butt ◽  
Shaukat Ali ◽  
Asma Bashir Ahmad ◽  
...  

Background The present study aimed to prepare effective silk derived formulations in combination with plant extract (Aloe vera gel) to speed up the wound healing process in diabetic mice. Methods Diabetes was induced in albino mice by using alloxan monohydrate. After successful induction of diabetes in mice, excision wounds were created via biopsy puncture (6 mm). Wound healing effect of silk sericin (5%) and silk fibroin (5%) individually and in combination with 5% Aloe vera gel was evaluated by determining the percent wound contraction, healing time and histological analysis. Results The results indicated that the best biocompatible silk combination was of 5% silk fibroin and 5% Aloe vera gel in which wounds were healed in 13 days with wound contraction: 98.33 ± 0.80%. In contrast, the wound of the control group (polyfax) healed in 19 day shaving 98.5 ± 0.67% contraction. Histological analysis revealed that the wounds which were treated with silk formulations exhibited an increased growth of blood vessels, collagen fibers, and much reduced inflammation. Conclusion It can be concluded that a combination of Bombyx mori silk and Aloe vera gel is a natural biomaterial that can be utilized in wound dressings and to prepare more innovative silk based formulations for speedy recovery of chronic wounds.


Medicina ◽  
2021 ◽  
Vol 57 (10) ◽  
pp. 1129
Author(s):  
Eyal Melamed ◽  
Alexei Rovitsky ◽  
Tohar Roth ◽  
Lior Assa ◽  
Gadi Borkow

Background and Objective: Copper, a wide spectrum biocide, also plays a key role in angiogenesis and wound healing. Antibacterial wound dressings impregnated with copper oxide microparticles (COD) have been recently cleared by the U.S. FDA and other regulatory bodies for the treatment of acute and chronic wounds, including diabetic wounds. Our objective was to evaluate the capacity of COD in stimulating the healing of non-infected stagnated wounds in diabetic patients initially treated with standard of care (SOC) dressings. Materials and Methods: The trial was divided into the three following phases: 1–2 weeks of screening, during which the patients were treated with SOC dressings; 4 weeks of treatment, during which the COD was applied twice weekly; and 2 weeks of follow-up, during which the patients were again treated with SOC dressings. The wound conditions and sizes were assessed by clinical evaluation and a wound imaging artificial intelligence system. Results: Following 1 month of COD treatment, there was a clear reduction in the mean wound area (53.2%; p = 0.003), an increase in granulation tissue (43.37; p < 0.001), and a reduction in fibrins (47.8%; p = 0.002). In patients with non-weight-bearing wounds, the reduction in wound size was even more dramatic (66.9%; p < 0.001). Conclusions: The results of this study, showing a statistically significant influence of COD on wound healing of hard-to-heal wounds in diabetic patients, strongly supports the notion that copper oxide-impregnated dressings enhance wound healing directly. Further larger controlled studies should be conducted to substantiate our findings.


VASA ◽  
2000 ◽  
Vol 29 (4) ◽  
pp. 253-257 ◽  
Author(s):  
Urs Brunner ◽  
Eberlein

Background: Chronic wounds are an everyday problem in general medicine. Likewise, their persistence, painfulness and frequency of relapse are everyday problems which strain the stamina of patients and doctors to the point of desperation. Over recent years, the moist therapy concept has proven to be a major advance in wound treatment. The introduction of innovative wound dressings in the 1990’s made it possible to substantially accelerate wound healing and couple it with a simultaneous alleviation of pain. Patients:In the scope of our team’s experience one such product is the hydrofibre. This paper offers information on the possibilities for using this material on the basis of 135 wound situations, 44% of which are within the context of diabetes mellitus. Results: There was a positive influence on wound healing in 92% of the cases. This treatment result is analysed in terms of causal, topographic and iconographic aspects. Conclusion: Given the main focal points of our group of patients, it may be stated that hydrofibres are suitable for diabetic wounds.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2168
Author(s):  
Ibrahim N. Amirrah ◽  
Mohd Farhanulhakim Mohd Razip Wee ◽  
Yasuhiko Tabata ◽  
Ruszymah Bt Hj Idrus ◽  
Abid Nordin ◽  
...  

Diabetic foot ulcer (DFU) is a chronic wound frequently delayed from severe infection. Wound dressing provides an essential barrier between the ulcer and the external environment. This review aimed to analyse the effectiveness of antibacterial collagen-based dressing for DFU treatment in a clinical setting. An electronic search in four databases, namely, Scopus, PubMed, Ovid MEDLINE(R), and ISI Web of Science, was performed to obtain relevant articles published within the last ten years. The published studies were included if they reported evidence of (1) collagen-based antibacterial dressing or (2) wound healing for diabetic ulcers, and (3) were written in English. Both randomised and non-randomised clinical trials were included. The search for relevant clinical studies (n) identified eight related references discussing the effectiveness of collagen-based antibacterial wound dressings for DFU comprising collagen impregnated with polyhexamethylene biguanide (n = 2), gentamicin (n = 3), combined-cellulose and silver (n = 1), gentian violet/methylene blue mixed (n = 1), and silver (n = 1). The clinical data were limited by small sample sizes and multiple aetiologies of chronic wounds. The evidence was not robust enough for a conclusive statement, although most of the studies reported positive outcomes for the use of collagen dressings loaded with antibacterial properties for DFU wound healing. This study emphasises the importance of having standardised clinical trials, larger sample sizes, and accurate reporting for reliable statistical evidence confirming DFU treatment efficiency.


2021 ◽  
Author(s):  
Mehran Alavi ◽  
Rajender S. Varma

Abstract The aggregation of silver nanoparticles (AgNPs) in colloidal solution and the oxidative cytotoxicity towards human cells are two major hindrances for their thriving medicinal applications. Their incorporation in natural polymers such as cellulose, chitosan, alginate, collagen, gelatin, silk fibroin, carrageenan, hyaluronic acid, keratin and starch may be an alluring alternative strategy to sidestep these complications and attaining the advantageous wound dressings. Biocompatibility, bioavailability, biodegradability, and inherent therapeutic properties known for theses polymers, would accelerate the healing of infected chronic wounds. However, the low thermal stability, mechanical strength, rapid biodegradation, and weak washing resistance properties are some of the limitations for these polymers. Herein, recent advances, present challenges and future perspective for AgNPs incorporated nanocomposites (NCs) are discussed to realize ideal antibacterial activities by exploiting the abundant natural biopolymers.


2021 ◽  
Vol 40 ◽  
pp. 01002
Author(s):  
Dina Shokatayeva ◽  
Irina Savitskaya ◽  
Aida Kistaubayeva

The biological activity of postbiotic from Bacillus subtilis exometabolites was determined due to protein content - 0.541±13.4 mg/ml, the level of proteases - 7.8±0.3 U/ml and the presence of antimicrobial substances. A biocomposite material was developed by co-aggregation of bacterial cellulose, chitosan and Bacillus exometabolites. Modified BC gel film possesses high antagonistic activity against causative agents of wound infections: Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis. The use of the obtained material in treatment of wounds on laboratory animals reduces healing time by an average of 20%. The developed bioactive wound dressings is intended for local application in order to optimize the wound healing process.


Sign in / Sign up

Export Citation Format

Share Document