scholarly journals Exploitation of Drought Tolerance-Related Genes for Crop Improvement

2021 ◽  
Vol 22 (19) ◽  
pp. 10265
Author(s):  
Jingyi Wang ◽  
Chaonan Li ◽  
Long Li ◽  
Matthew Reynolds ◽  
Xinguo Mao ◽  
...  

Drought has become a major threat to food security, because it affects crop growth and development. Drought tolerance is an important quantitative trait, which is regulated by hundreds of genes in crop plants. In recent decades, scientists have made considerable progress to uncover the genetic and molecular mechanisms of drought tolerance, especially in model plants. This review summarizes the evaluation criteria for drought tolerance, methods for gene mining, characterization of genes related to drought tolerance, and explores the approaches to enhance crop drought tolerance. Collectively, this review illustrates the application prospect of these genes in improving the drought tolerance breeding of crop plants.

2019 ◽  
Vol 20 (22) ◽  
pp. 5586 ◽  
Author(s):  
Songtao Liu ◽  
Tinashe Zenda ◽  
Anyi Dong ◽  
Yatong Yang ◽  
Xinyue Liu ◽  
...  

Drought stress is a major abiotic factor compromising plant cell physiological and molecular events, consequently limiting crop growth and productivity. Maize (Zea mays L.) is among the most drought-susceptible food crops. Therefore, understanding the mechanisms underlying drought-stress responses remains critical for crop improvement. To decipher the molecular mechanisms underpinning maize drought tolerance, here, we used a comparative morpho-physiological and proteomics analysis approach to monitor the changes in germinating seeds of two incongruent (drought-sensitive wild-type Vp16 and drought-tolerant mutant vp16) lines exposed to polyethylene-glycol-induced drought stress for seven days. Our physiological analysis showed that the tolerant line mutant vp16 exhibited better osmotic stress endurance owing to its improved reactive oxygen species scavenging competency and robust osmotic adjustment as a result of greater cell water retention and enhanced cell membrane stability. Proteomics analysis identified a total of 1200 proteins to be differentially accumulated under drought stress. These identified proteins were mainly involved in carbohydrate and energy metabolism, histone H2A-mediated epigenetic regulation, protein synthesis, signal transduction, redox homeostasis and stress-response processes; with carbon metabolism, pentose phosphate and glutathione metabolism pathways being prominent under stress conditions. Interestingly, significant congruence (R2 = 81.5%) between protein and transcript levels was observed by qRT-PCR validation experiments. Finally, we propose a hypothetical model for maize germinating-seed drought tolerance based on our key findings identified herein. Overall, our study offers insights into the overall mechanisms underpinning drought-stress tolerance and provides essential leads into further functional validation of the identified drought-responsive proteins in maize.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qian-Hao Zhu ◽  
Warwick Stiller ◽  
Philippe Moncuquet ◽  
Stuart Gordon ◽  
Yuman Yuan ◽  
...  

Abstract Fiber mutants are unique and valuable resources for understanding the genetic and molecular mechanisms controlling initiation and development of cotton fibers that are extremely elongated single epidermal cells protruding from the seed coat of cottonseeds. In this study, we reported a new fuzzless-tufted cotton mutant (Gossypium hirsutum) and showed that fuzzless-tufted near-isogenic lines (NILs) had similar agronomic traits and a higher ginning efficiency compared to their recurrent parents with normal fuzzy seeds. Genetic analysis revealed that the mutant phenotype is determined by a single incomplete dominant locus, designated N5. The mutation was fine mapped to an approximately 250-kb interval containing 33 annotated genes using a combination of bulked segregant sequencing, SNP chip genotyping, and fine mapping. Comparative transcriptomic analysis using 0–6 days post-anthesis (dpa) ovules from NILs segregating for the phenotypes of fuzzless-tufted (mutant) and normal fuzzy cottonseeds (wild-type) uncovered candidate genes responsible for the mutant phenotype. It also revealed that the flanking region of the N5 locus is enriched with differentially expressed genes (DEGs) between the mutant and wild-type. Several of those DEGs are members of the gene families with demonstrated roles in cell initiation and elongation, such as calcium-dependent protein kinase and expansin. The transcriptome landscape of the mutant was significantly reprogrammed in the 6 dpa ovules and, to a less extent, in the 0 dpa ovules, but not in the 2 and 4 dpa ovules. At both 0 and 6 dpa, the reprogrammed mutant transcriptome was mainly associated with cell wall modifications and transmembrane transportation, while transcription factor activity was significantly altered in the 6 dpa mutant ovules. These results imply a similar molecular basis for initiation of lint and fuzz fibers despite certain differences.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 991
Author(s):  
Ana Maria Figueira Gomes ◽  
David Draper ◽  
Nascimento Nhantumbo ◽  
Rafael Massinga ◽  
José C. Ramalho ◽  
...  

Cowpea (Vigna unguiculata) is a neglected crop native to Africa, with an outstanding potential to contribute to the major challenges in food and nutrition security, as well as in agricultural sustainability. Two major issues regarding cowpea research have been highlighted in recent years—the establishment of core collections and the characterization of landraces—as crucial to the implementation of environmentally resilient and nutrition-sensitive production systems. In this work, we have collected, mapped, and characterized the morphological attributes of 61 cowpea genotypes, from 10 landraces spanning across six agro-ecological zones and three provinces in Mozambique. Our results reveal that local landraces retain a high level of morphological diversity without a specific geographical pattern, suggesting the existence of gene flow. Nevertheless, accessions from one landrace, i.e., Maringué, seem to be the most promising in terms of yield and nutrition-related parameters, and could therefore be integrated into the ongoing conservation and breeding efforts in the region towards the production of elite varieties of cowpea.


2021 ◽  
Vol 22 (14) ◽  
pp. 7390
Author(s):  
Nicole Wesch ◽  
Frank Löhr ◽  
Natalia Rogova ◽  
Volker Dötsch ◽  
Vladimir V. Rogov

Ubiquitin fold modifier 1 (UFM1) is a member of the ubiquitin-like protein family. UFM1 undergoes a cascade of enzymatic reactions including activation by UBA5 (E1), transfer to UFC1 (E2) and selective conjugation to a number of target proteins via UFL1 (E3) enzymes. Despite the importance of ufmylation in a variety of cellular processes and its role in the pathogenicity of many human diseases, the molecular mechanisms of the ufmylation cascade remains unclear. In this study we focused on the biophysical and biochemical characterization of the interaction between UBA5 and UFC1. We explored the hypothesis that the unstructured C-terminal region of UBA5 serves as a regulatory region, controlling cellular localization of the elements of the ufmylation cascade and effective interaction between them. We found that the last 20 residues in UBA5 are pivotal for binding to UFC1 and can accelerate the transfer of UFM1 to UFC1. We solved the structure of a complex of UFC1 and a peptide spanning the last 20 residues of UBA5 by NMR spectroscopy. This structure in combination with additional NMR titration and isothermal titration calorimetry experiments revealed the mechanism of interaction and confirmed the importance of the C-terminal unstructured region in UBA5 for the ufmylation cascade.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Betty Ha ◽  
Kevin P. Larsen ◽  
Jingji Zhang ◽  
Ziao Fu ◽  
Elizabeth Montabana ◽  
...  

AbstractReverse transcription of the HIV-1 viral RNA genome (vRNA) is an integral step in virus replication. Upon viral entry, HIV-1 reverse transcriptase (RT) initiates from a host tRNALys3 primer bound to the vRNA genome and is the target of key antivirals, such as non-nucleoside reverse transcriptase inhibitors (NNRTIs). Initiation proceeds slowly with discrete pausing events along the vRNA template. Despite prior medium-resolution structural characterization of reverse transcriptase initiation complexes (RTICs), higher-resolution structures of the RTIC are needed to understand the molecular mechanisms that underlie initiation. Here we report cryo-EM structures of the core RTIC, RTIC–nevirapine, and RTIC–efavirenz complexes at 2.8, 3.1, and 2.9 Å, respectively. In combination with biochemical studies, these data suggest a basis for rapid dissociation kinetics of RT from the vRNA–tRNALys3 initiation complex and reveal a specific structural mechanism of nucleic acid conformational stabilization during initiation. Finally, our results show that NNRTIs inhibit the RTIC and exacerbate discrete pausing during early reverse transcription.


Blood ◽  
2020 ◽  
Author(s):  
Thomas robert leon Klei ◽  
Jill Jasmine Dalimot ◽  
Benjamin Nota ◽  
Martijn Veldthuis ◽  
Erik Mul ◽  
...  

Red pulp macrophages of the spleen mediate turnover of billions of senescent erythrocytes per day. However, the molecular mechanisms involved in sequestration of senescent erythrocytes, their recognition and their subsequent degradation by red pulp macrophages remain unclear. In this study we provide evidence that the splenic environment is of substantial importance in facilitating erythrocyte turnover through induction of hemolysis. Upon isolating human spleen red pulp macrophages we noted a substantial lack of macrophages that were in the process of phagocytosing intact erythrocytes. Detailed characterization of erythrocyte and macrophage subpopulations from human spleen tissue led to the identification of erythrocytes that are devoid of hemoglobin, so-called erythrocyte ghosts. By in vivo imaging and transfusion experiments we further confirmed that senescent erythrocytes that are retained in the spleen are subject to hemolysis. Additionally, we show that erythrocyte adhesion molecules, which are specifically activated on aged erythrocytes, cause senescent erythrocytes to interact with extracellular matrix proteins that are exposed within the splenic architecture. Such adhesion molecule-driven retention of senescent erythrocytes, under low shear conditions, was found to result in steady shrinkage of the cell and ultimately resulted in hemolysis. In contrast to intact senescent erythrocytes, the remnant erythrocyte ghost shells were prone to recognition and breakdown by red pulp macrophages. These data identify hemolysis as a key event in the turnover of senescent erythrocytes, which alters our current understanding of how erythrocyte degradation is regulated.


Author(s):  
Vanessa Vernoud ◽  
Ludivine Lebeigle ◽  
Jocelyn Munier ◽  
Julie Marais ◽  
Myriam Sanchez ◽  
...  

Abstract The use of pulses as ingredients for the production of food products rich in plant proteins is increasing. However, protein fractions prepared from pea or other pulses contain significant amounts of saponins, glycosylated triterpenes which can impart an undesirable bitter taste when used as an ingredient in foodstuffs. In this paper, we describe the identification and characterization of a gene involved in saponin biosynthesis during pea seed development, by screening mutants obtained from two Pisum sativum TILLING (Targeting Induced Local Lesions in Genomes) populations in two different genetic backgrounds. The mutations studied are located in a gene designated PsBAS1 (β-amyrin synthase1) which is highly expressed in maturing pea seeds and which encodes a protein previously shown to correspond to an active β-amyrin synthase. The first allele is a nonsense mutation, while the second mutation is located in a splice site and gives rise to a mis-spliced transcript encoding a truncated, non-functional protein. The homozygous mutant seeds accumulated virtually no saponin without affecting seed nutritional or physiological quality. Interestingly, BAS1 appears to control saponin accumulation in all other tissues of the plant examined. These lines represent a first step in the development of pea varieties lacking bitterness off-flavours in their seeds. Our work also shows that TILLING populations in different genetic backgrounds represent valuable genetic resources for both crop improvement and functional genomics.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Massimo Vischi ◽  
Nicola Zorzin ◽  
Maria Bernhart ◽  
Johanna Winkler ◽  
Dipak Santra ◽  
...  

Abstract Background Global warming and issues in favour of a more sustainable agriculture suggest a reconsideration of minor cereals in European agrosystems. Compared to other summer crops, proso millet has a remarkable drought resistance and could be used to improve crop rotation and biodiversity. Proso millet is also increasingly sought by industry to produce novel foods such as those designed for coeliac patients. In this study, a thorough characterization of 11, commercially available, proso millet (Panicum miliaceum L.) varieties was carried out as a preliminary step for crop reintroduction and breeding in Western Europe. Methods The cultivars under evaluation were introduced from Austria, Poland, Russia, and the USA (University of Nebraska–Lincoln). Plants were grown at Udine (NE Italy) and Gleisdorf (Styria, Austria), under greenhouse and field conditions, respectively. Yield components and a range of morphophysiological characters were recorded in both locations. In parallel, 85 SSR markers were tested on DNA samples extracted from randomly chosen plants of each variety and the 12 responsive markers used to genotype the whole variety set. Results Morphometric analyses showed that varieties have several diverging phenotypic traits and architectures. In all instances, yields recorded at field level were much lower than potential yields. In this respect, US selections were comparable to earlier developed European varieties, suggesting that breeding for an increased adaptation is the keystone for a stable reintroduction of millet in Western Europe. Molecular analyses uncovered remarkably low genetic differences and heterozygosity levels within cultivars, confirming millet as an essentially autogamous species; in contrast, large genetic distances were noted among cultivars selected in different environments. Results of SSR genotyping combined with those originating from phenotypic analyses indicated possible crosses to source the genetic variability necessary for selection. Conclusions This study enabled the identification of cultivars that could be used to revitalize the crop in Western Europe and to produce genetically variable hybrid progenies exploitable by breeding.


Sign in / Sign up

Export Citation Format

Share Document