scholarly journals CHIR99021, trough GSK-3β Targeting, Reduces Epithelioid Sarcoma Cell Proliferation by Activating Mitotic Catastrophe and Autophagy

2021 ◽  
Vol 22 (20) ◽  
pp. 11147
Author(s):  
Sabino Russi ◽  
Alessandro Sgambato ◽  
Anna Maria Bochicchio ◽  
Pietro Zoppoli ◽  
Michele Aieta ◽  
...  

Epithelioid sarcoma (ES) is a rare disease representing <1% of soft tissue sarcomas. Current therapies are based on anthracycline alone or in combination with ifosfamide or other cytotoxic drugs. ES is still characterized by a poor prognosis with high rates of recurrence. Indeed, for years, ES survival rates have remained stagnant, suggesting that conventional treatments should be revised and improved. New therapeutic approaches are focused to target the key regulators of signaling pathways, the causative markers of tumor pathophysiology. To this end, we selected, among the drugs to which an ES cell line is highly sensitive, those that target signaling pathways known to be dysregulated in ES. In particular, we found a key role for GSK-3β, which results in up-regulation in tumor versus normal tissue samples and associated to poor prognosis in sarcoma patients. Following this evidence, we evaluated CHIR99021, a GSK-3 inhibitor, as a potential drug for use in ES therapy. Our data  highlight that, in ES cells, CHIR99021 induces cell cycle arrest, mitotic catastrophe (MC) and autophagic response, resulting in reduced cell proliferation. Our results support the potential efficacy of CHIR99021 in ES treatment and encourage further preclinical and clinical studies.

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 111-OR
Author(s):  
GIORGIO BASILE ◽  
AMEDEO VETERE ◽  
KA-CHEUK LIU ◽  
JIANG HU ◽  
OLOV ANDERSSON ◽  
...  

2019 ◽  
Vol 72 (8) ◽  
pp. 1523-1526
Author(s):  
Oleksandr O. Lytvynenko ◽  
Volodymyr F. Konovalenko ◽  
Anton Yu. Ryzhov

Introduction: The treatment of patients with malignant fibrous histiocytoma as well as other soft tissue sarcomas is not sufficiently effective up to date, and has largely changed and reflects the alterations, occurred in oncology as a whole. The number of amputation decreased over the last 10-15 years. Some researchers associate the improvement of treatment outcomes with the development of combined and complex methods. The aim of the study is an improvement of the results of treatment of patients with soft tissue malignant histiocytoma on the basis of determination of factors, influencing local recurrence development. Materials and methods: The basis of our study was a comprehensive analysis of examination and treatment results of 130 patients with MFH of the soft tissue of limbs, of them in 84 patients (64.6%) the recurrences developed. The group included 45 (53.6%) males and 39 (46.4%) females. The major part of patients – 82.1% (60 patients) were older than 40 years. Results and conclusions: The number of recurrences after the treatment in general surgical facilities is 86.9%, whereas in the patients after the treatment in the specialized oncological facilities this figure is twice lower (40%). The characteristic of the medical facility where the patient receives his/her primary treatment largely affects the development of local recurrences, patients’ quality of life and overall survival rates. The surgical method remains the leading modality in the treatment of MFH of ST. Wide and radical excision of tumors in the specialized oncological facilities allows achieving better survival outcomes of the patients.


2014 ◽  
Vol 20 (23) ◽  
pp. 3776-3794 ◽  
Author(s):  
Fuencisla Pilar-Cuellar ◽  
Rebeca Vidal ◽  
Alvaro Díaz ◽  
Elena Castro ◽  
Severiano Anjos ◽  
...  

2020 ◽  
Vol 16 (8) ◽  
pp. 1022-1043
Author(s):  
Imran Khan ◽  
Sadaf Mahfooz ◽  
Mustafa A. Hatiboglu

Background: Glioblastoma is one of the most aggressive and devastating tumours of the central nervous system with short survival time. Glioblastoma usually shows fast cell proliferation and invasion of normal brain tissue causing poor prognosis. The present standard of care in patients with glioblastoma includes surgery followed by radiotherapy and temozolomide (TMZ) based chemotherapy. Unfortunately, these approaches are not sufficient to lead a favorable prognosis and survival rates. As the current approaches do not provide a long-term benefit in those patients, new alternative treatments including natural compounds, have drawn attention. Due to their natural origin, they are associated with minimum cellular toxicity towards normal cells and it has become one of the most attractive approaches to treat tumours by natural compounds or phytochemicals. Objective: In the present review, the role of natural compounds or phytochemicals in the treatment of glioblastoma describing their efficacy on various aspects of glioblastoma pathophysiology such as cell proliferation, apoptosis, cell cycle regulation, cellular signaling pathways, chemoresistance and their role in combinatorial therapeutic approaches was described. Methods: Peer-reviewed literature was extracted using Pubmed, EMBASE Ovid and Google Scholar to be reviewed in the present article. Conclusion: Preclinical data available in the literature suggest that phytochemicals hold immense potential to be translated into treatment modalities. However, further clinical studies with conclusive results are required to implement phytochemicals in treatment modalities.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jun Liu ◽  
Jipeng Li ◽  
Ke Wang ◽  
Haiming Liu ◽  
Jianyong Sun ◽  
...  

AbstractFork-head box protein M1 (FoxM1) is a transcriptional factor which plays critical roles in cancer development and progression. However, the general regulatory mechanism of FoxM1 is still limited. STMN1 is a microtubule-binding protein which can inhibit the assembly of microtubule dimer or promote depolymerization of microtubules. It was reported as a major responsive factor of paclitaxel resistance for clinical chemotherapy of tumor patients. But the function of abnormally high level of STMN1 and its regulation mechanism in cancer cells remain unclear. In this study, we used public database and tissue microarrays to analyze the expression pattern of FoxM1 and STMN1 and found a strong positive correlation between FoxM1 and STMN1 in multiple types of cancer. Lentivirus-mediated FoxM1/STMN1-knockdown cell lines were established to study the function of FoxM1/STMN1 by performing cell viability assay, plate clone formation assay, soft agar assay in vitro and xenograft mouse model in vivo. Our results showed that FoxM1 promotes cell proliferation by upregulating STMN1. Further ChIP assay showed that FoxM1 upregulates STMN1 in a transcriptional level. Prognostic analysis showed that a high level of FoxM1 and STMN1 is related to poor prognosis in solid tumors. Moreover, a high co-expression of FoxM1 and STMN1 has a more significant correlation with poor prognosis. Our findings suggest that a general FoxM1-STMN1 axis contributes to cell proliferation and tumorigenesis in hepatocellular carcinoma, gastric cancer and colorectal cancer. The combination of FoxM1 and STMN1 can be a more precise biomarker for prognostic prediction.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Haoqi Zhao ◽  
Lan Wang ◽  
Shufang Wang ◽  
Xihua Chen ◽  
Min Liang ◽  
...  

Abstract Background Metastasis and invasion are crucial in determining the mortality of cervical carcinoma (CC) patients. The epithelial–mesenchymal transition (EMT) is now a universal explanation for the mechanisms of tumor metastasis. Α-chimeric protein (α-chimaerin, CHN1) plays an important role in the regulation of signal transduction and development. However, the molecular regulatory relationships between CHN1 and CC progression in relation to EMT have not yet been identified. Methods The expression of CHN1 in CC tissues, adjacent tissues, and lymph node metastases from CC patients was detected by immunohistochemistry. Upregulation and knockdown of CHN1 were achieved by transfection of CC cells. The effect of CHN1 on cell proliferation was determined by CCK-8 and plate clone formation assays. Changes in migration and invasion capabilities were evaluated using scratch migration and transwell invasion assays. The effect of CHN1 overexpression and interference on xenograft tumor growth was determined by tumor weight and pathological analyses. The expression of EMT-related mRNAs was measured by qRT-PCR in transfected CC cells. EMT-related proteins and Akt/GSK-3β/Snail signaling pathway-related proteins were also evaluated by western blotting. Results CHN1 was overexpressed in CC tissues and was associated with lymph node metastasis and low survival in CC patients. Overexpression of CHN1 promoted cell proliferation, migration, and invasion in CC cells. In contrast, silencing of CHN1 inhibited these phenomena. Overexpression of CHN1 promoted tumor formation in an in vivo xenograft tumor mouse model, with increased tumor volumes and weights. In addition, CHN1 induced the expression of EMT-related transcription factors, accompanied by the decreased expression of epithelial markers and increased expression of mesenchymal markers. The Akt/GSK-3β/Snail signaling pathway was activated by overexpression of CHN1 in vitro, and activation of this pathway was inhibited by the signaling pathway inhibitor LY294002. Conclusion These results suggest that CHN1 promotes the development and progression of cervical carcinoma via the Akt/GSK-3β/Snail pathway by inducing EMT.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1742
Author(s):  
Melysa Fitriana ◽  
Wei-Lun Hwang ◽  
Pak-Yue Chan ◽  
Tai-Yuan Hsueh ◽  
Tsai-Tsen Liao

Head and neck squamous cell carcinomas (HNSCCs) are epithelial malignancies with 5-year overall survival rates of approximately 40–50%. Emerging evidence indicates that a small population of cells in HNSCC patients, named cancer stem cells (CSCs), play vital roles in the processes of tumor initiation, progression, metastasis, immune evasion, chemo-/radioresistance, and recurrence. The acquisition of stem-like properties of cancer cells further provides cellular plasticity for stress adaptation and contributes to therapeutic resistance, resulting in a worse clinical outcome. Thus, targeting cancer stemness is fundamental for cancer treatment. MicroRNAs (miRNAs) are known to regulate stem cell features in the development and tissue regeneration through a miRNA–target interactive network. In HNSCCs, miRNAs act as tumor suppressors and/or oncogenes to modulate cancer stemness and therapeutic efficacy by regulating the CSC-specific tumor microenvironment (TME) and signaling pathways, such as epithelial-to-mesenchymal transition (EMT), Wnt/β-catenin signaling, and epidermal growth factor receptor (EGFR) or insulin-like growth factor 1 receptor (IGF1R) signaling pathways. Owing to a deeper understanding of disease-relevant miRNAs and advances in in vivo delivery systems, the administration of miRNA-based therapeutics is feasible and safe in humans, with encouraging efficacy results in early-phase clinical trials. In this review, we summarize the present findings to better understand the mechanical actions of miRNAs in maintaining CSCs and acquiring the stem-like features of cancer cells during HNSCC pathogenesis.


2021 ◽  
Vol 22 (6) ◽  
pp. 2978
Author(s):  
Chie-Hong Wang ◽  
Chun-Hao Tsai ◽  
Tsung-Li Lin ◽  
Shih-Ping Liu

Mesenchymal stem (MS) cells, embryonic stem (ES) cells, and induced pluripotent stem (iPS) cells are known for their ability to differentiate into different lineages, including chondrocytes in culture. However, the existing protocol for chondrocyte differentiation is time consuming and labor intensive. To improve and simplify the differentiation strategy, we have explored the effects of interactions between growth factors (transforming growth factor β1 (Tgfb1) and colony stimulating factor 3 (Csf3), and culture environments (2D monolayer and 3D nanofiber scaffold) on chondrogenic differentiation. For this, we have examined cell morphologies, proliferation rates, viability, and gene expression profiles, and characterized the cartilaginous matrix formed in the chondrogenic cultures under different treatment regimens. Our data show that 3D cultures support higher proliferation rate than the 2D cultures. Tgfb1 promotes cell proliferation and viability in both types of culture, whereas Csf3 shows positive effects only in 3D cultures. Interestingly, our results indicate that the combined treatments of Tgfb1 and Csf3 do not affect cell proliferation and viability. The expression of cartilaginous matrix in different treatment groups indicates the presence of chondrocytes. We found that, at the end of differentiation stage 1, pluripotent markers were downregulated, while the mesodermal marker was upregulated. However, the expression of chondrogenic markers (col2a1 and aggrecan) was upregulated only in the 3D cultures. Here, we report an efficient, scalable, and convenient protocol for chondrogenic differentiation of iPS cells, and our data suggest that a 3D culture environment, combined with tgfb1 and csf3 treatment, promotes the chondrogenic differentiation.


Sign in / Sign up

Export Citation Format

Share Document