scholarly journals Autotaxin May Have Lysophosphatidic Acid-Unrelated Effects on Three-Dimension (3D) Cultured Human Trabecular Meshwork (HTM) Cells

2021 ◽  
Vol 22 (21) ◽  
pp. 12039
Author(s):  
Megumi Watanabe ◽  
Masato Furuhashi ◽  
Yuri Tsugeno ◽  
Yosuke Ida ◽  
Fumihito Hikage ◽  
...  

Purpose: The objective of the current study was to evaluate the effects of the autotaxin (ATX)–lysophosphatidic acid (LPA) signaling axis on the human trabecular meshwork (HTM) in two-dimensional (2D) and three-dimensional (3D) cultures of HTM cells. Methods: The effects were characterized by transendothelial electrical resistance (TEER) and FITC-dextran permeability (2D), measurements of size and stiffness (3D), and the expression of several genes, including extracellular matrix (ECM) molecules, their modulators, and endoplasmic reticulum (ER) stress-related factors. Results: A one-day exposure to 200 nM LPA induced significant down-sizing effects of the 3D HTM spheroids, and these effects were enhanced slightly on longer exposure. The TEER and FITC-dextran permeability data indicate that LPA induced an increase in the barrier function of the 2D HTM monolayers. A one-day exposure to a 2 mg/L solution of ATX also resulted in a significant decrease in the sizes of the 3D HTM spheroids, and an increase in stiffness was also observed. The gene expression of several ECMs, their regulators and ER-stress related factors by the 3D HTM spheroids were altered by both ATX and LPA, but in different manners. Conclusions: The findings presented herein suggest that ATX may have additional roles in the human TM, in addition to the ATX–LPA signaling axis.

1987 ◽  
Vol 12 (3) ◽  
pp. 349-352
Author(s):  
J. ENGEL ◽  
M. SALAI ◽  
B. YAFFE ◽  
R. TADMOR

Three-dimensional computerized imaging is a new modality of radiological imaging. This new technique transforms the two-dimensional slices of bi-plane CT into a three-dimensional picture by a computer’s monitor adjusted to the system. This system enables the physician to rotate the angle of viewing of the desired region to any desired angle. Moreover, this system can delete certain features of different densities from the picture, such as silicone implants, thus improving visualization. Our preliminary results using this technique are presented. The advantages, pitfalls, and suggested future applications of this new technique in hand surgery are discussed.


1992 ◽  
Vol 17 (6) ◽  
pp. 702-702
Author(s):  
J. Engel ◽  
M. Salai ◽  
B. Yaffe ◽  
R. Tadmor

Three-dimensional computerized imaging is a new modality of radiological imaging. This new technique transforms the two-dimensional slices of bi-plane CT into a three-dimensional picture by a computer's monitor adjusted to the system. This system enables the physician to rotate the angle of viewing of the desired region to any desired angle. Moreover, this system can delete certain features of different densities from the picture, such as silicone implants, thus improving visualization. Our preliminary results using this technique are presented. The advantages, pitfalls, and suggested future applications of this new technique in hand surgery are discussed.


2021 ◽  
Vol 43 (3) ◽  
pp. 1715-1725
Author(s):  
Hiroyasu Katayama ◽  
Masato Furuhashi ◽  
Araya Umetsu ◽  
Fumihito Hikage ◽  
Megumi Watanabe ◽  
...  

In the current study, to elucidate the pathological characteristics of myopic scleral stroma, three-dimensional (3D) cultures of human scleral stroma fibroblasts (HSSFs) with several axial lengths (AL, 22.80–30.63 mm) that were obtained from patients (n = 7) were examined. Among the three groups of ALs, <25 mm (n = 2), 25–30 mm (n = 2), and >30 mm (n = 3), the physical properties of the 3D HSSFs spheroids with respect to size and stiffness, the expressions of extracellular matrix (ECM) molecules, including collagen (COL) 1, 4, and 6 and fibronectin (FN) by qPCR and immunohistochemistry (IHC), and the mRNA expression of ECM metabolism modulators including hypoxia-inducible factor 1A (HIF 1A), HIF 2A, lysyl oxidase (LOX), tissue inhibitor of metalloproteinase (TIMP) 1–4, and matrix metalloproteinase (MMP) 2, 9, and 14 as well as several endoplasmic reticulum (ER) stress-related factors were compared. In the largest AL group (>30 mm), the 3D HSSFs spheroids were (1) significantly down-sized and less stiff compared to the other groups, and (2) significant changes were detected in the expression of some ECMs (qPCR; the up-regulation of COL1 and COL4, and the down-regulation of FN, IHC; the up-regulation of COL1 and FN, and down-regulation of COL4). The mRNA expressions of ECM modulators and ER stress-related genes were also altered with increasing AL length (up-regulation of HIF2A, MMP2, XBP1, and MMP14, down-regulation of LOX, TIMP 2 and 3, GRP78, GRP94, IRE1, and ATF6). In addition, a substantial down-regulation of some ER stress-related genes (ATF4, sXPB1 and CHOP) was observed in the 25–30 mm AL group. The findings presented herein suggest that small and stiffer 3D HSSFs spheroids in the largest AL group may accurately replicate the pathological significance of scleral thinning and weakening in myopic eyes. In addition, the modulation of several related factors among the different AL groups may also provide significant insights into our understanding of the molecular mechanisms responsible for causing myopic changes in the sclera.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6382
Author(s):  
Megumi Watanabe ◽  
Yosuke Ida ◽  
Masato Furuhashi ◽  
Yuri Tsugeno ◽  
Fumihito Hikage ◽  
...  

Effects of a pan-ROCK-inhibitor, ripasudil (Rip), and a ROCK2 inhibitor, KD025 on dexamethasone (DEX)-treated human trabecular meshwork (HTM) cells as a model of steroid-induced glaucoma were investigated. In the presence of Rip or KD025, DEX-treated HTM cells were subjected to permeability analysis of 2D monolayer by transendothelial electrical resistance (TEER) and FITC–dextran permeability, physical properties, size and stiffness analysis (3D), and qPCR of extracellular matrix (ECM), and their modulators. DEX resulted in a significant increase in the permeability, as well as a large and stiff 3D spheroid, and those effects were inhibited by Rip. In contrast, KD025 exerted opposite effects on the physical properties (down-sizing and softening). Furthermore, DEX induced several changes of gene expressions of ECM and their modulators were also modulated differently by Rip and KD025. The present findings indicate that Rip and KD025 induced opposite effects toward 2D and 3D cell cultures of DEX-treated HTM cells.


Author(s):  
MADHURI G. KULKARNI ◽  
AKANKSHA S. KASHIKAR

A three-dimensional consecutive (r1, r2, r3)-out-of-(m1, m2, m3):F system was introduced by Akiba et al. [J. Qual. Mainten. Eng.11(3) (2005) 254–266]. They computed upper and lower bounds on the reliability of this system. Habib et al. [Appl. Math. Model.34 (2010) 531–538] introduced a conditional type of two-dimensional consecutive-(r, s)-out-of-(m, n):F system, where the number of failed components in the system at the moment of system failure cannot be more than 2rs. We extend this concept to three dimension and introduce a conditional three-dimensional consecutive (s, s, s)-out-of-(s, s, m):F system. It is an arrangement of ms2 components like a cuboid and it fails if it contains either a cube of failed components of size (s, s, s) or 2s3 failed components. We derive an expression for the signature of this system and also obtain reliability of this system using system signature.


2016 ◽  
Vol 14 (1) ◽  
pp. 172988141667813 ◽  
Author(s):  
Xiaojun Wu ◽  
Zefei Li ◽  
Peizhi Wen

In order to improve the operational efficiency of robot-based shoe manufacturing, a method of shoe-groove tracking based on industrial robot is presented in the article. First, side surface of a shoe upper with a sole is scanned with a laser scanning device. The presented approach mainly consists of two steps: reconstruction of three-dimensional point cloud and feature curve extraction. It is difficult to extract the closed groove curve on shoe surface. We propose an innovative method to simplify the feature extraction through projecting geometric information from three dimension to two dimension, which is convenient to identify longest groove feature line in two-dimensional space. After detecting the two-dimensional groove line, we back project it to three-dimensional space to identify the three-dimensional thick groove point set. Finally, we thin and fit the groove curve into a trackable sequential curve. The experimental results show that the proposed system can effectively detect the shoe groove and generate trackable sequential curve. We also simulate the robot tracking process in a virtual environment to demonstrate the effectiveness of the presented method.


2021 ◽  
Vol 5 (11) ◽  
pp. 125-129
Author(s):  
Huifeng Zhang ◽  
Li Yuan

Through his life as a pupil in his early years and the transformation into a Fauve (wild beast), Henri Matisse learnt that he must forgo the traditional techniques of the masters and understand art in his own way. He first replaced the color scheme in his paintings with purer colors and clearer outlines of color ranges; in his later life, he devoted himself to two-dimensional coloring and finally to two-dimensional paper cut-outs. Therewith, a unique style brought forth by Henri Matisse took shape, ushering the diversification of the drawing medium. Since then, paintings are no more confined to rigid classicism, which only explores the relationship between colors in sketch-based three-dimensional spaces, but a reflection of the painters’ scrutiny of the nature of painting.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Megumi Watanabe ◽  
Yosuke Ida ◽  
Hiroshi Ohguro ◽  
Chiaki Ota ◽  
Fumihito Hikage

AbstractTo establish appropriate ex vivo models for a glaucomatous trabecular meshwork (TM), two-dimensional (2D) and three-dimensional (3D) cultures of human trabecular meshwork cells (HTM) were prepared in the presence of 250 nM dexamethasone (DEX) or 5 ng/mL TGFβ2, and characterized by the following analyses; transendothelial electrical resistance (TEER) measurements, FITC dextran permeability, scanning electron microscopy and the expression of the extracellular matrix (ECM) including collagen (COL)1, 4 and 6, and fibronectin (FN), α-smooth muscle actin (α-SMA), tissue inhibitor of metalloproteinase (TIMP)1–4, and matrix metalloproteinase (MMP)2, 9 and 14. DEX and TGFβ2 both caused a significant increase or decrease in the TEER values and FITC dextran permeability. During the 3D spheroid culture, DEX or TGFβ2 induced a mild and significant down-sizing and an increase in stiffness, respectively. TGFβ2 induced a significant up-regulation of COL1 and 4, FN, α-SMA, and MMP 2 and 14 (2D) or COL1 and 6, and TIMP2 and 3 (3D), and DEX induced a significant up-regulation of FN (3D) and TIMP4 (2D and 3D). The findings presented herein indicate that DEX or TGFβ2 resulted in mild and severe down-sized and stiff 3D HTM spheroids, respectively, thus making them viable in vitro HTM models for steroid-induced and primary open angle glaucoma.


1986 ◽  
Vol 108 (3) ◽  
pp. 222-229 ◽  
Author(s):  
M. C. Shaw ◽  
J. P. Avery

When very brittle materials are subjected to a complex state of stress they fail by maximum intensified tensile stress criterion first introduced by Griffith [1]. Nominal applied stresses are intensified by defects present in all real materials. It appears that defects controlling the strength of brittle materials are of two types—open ones characterized by circular voids found in sintered materials such as tungsten carbide and thin, essentially closed ones found in brittle polyphase rock such as granite. This paper is concerned with the extension of a very simple two dimensional theory for circular voids [3] to the three dimensional case involving spherical voids. While the fracture locus for the two dimensional case represents a conservative approximation sufficient for most engineering applications, the three dimension solution is necessary to give detailed result for cases involving near hydrostatic tension or compression.


2021 ◽  
Vol 91 (2) ◽  
pp. 275
Author(s):  
И.В. Янилкин ◽  
А.И. Гумаров ◽  
А.М. Рогов ◽  
Р.В. Юсупов ◽  
Л.Р. Тагиров

Niobium films of 4–100 nm thickness were synthesized on a silicon substrate under ultrahigh vacuum conditions. Measurements of electrical resistance showed a high temperature of the superconducting transition Tc, in the range of 4.7–9.1 K, and extremely small transition widths ΔTc in the range of 260–11 mK. The dependences of Tc and ΔTc on the magnetic field were studied, and superconducting coherence lengths and mean free paths of the conduction electrons were determined for different thicknesses of the synthesized films. A specific effect of the magnetic field on ΔTc was found, which reveals a transition from three-dimensional to two-dimensional superconductivity at thicknesses below 10 nm. The dependences of Tc and ΔTc on the films thickness and the magnitude of the magnetic field are discussed in the framework of existing concepts of superconductivity in thin films of superconducting metals.


Sign in / Sign up

Export Citation Format

Share Document