scholarly journals How Immunosenescence and Inflammaging May Contribute to Hyperinflammatory Syndrome in COVID-19

2021 ◽  
Vol 22 (22) ◽  
pp. 12539
Author(s):  
Ludmila Müller ◽  
Svetlana Di Benedetto

Aging is characterized by the dynamic remodeling of the immune system designated “immunosenescence,” and is associated with altered hematopoiesis, thymic involution, and lifelong immune stimulation by multitudinous chronic stressors, including the cytomegalovirus (CMV). Such alterations may contribute to a lowered proportion of naïve T-cells and to reduced diversity of the T-cell repertoire. In the peripheral circulation, a shift occurs towards accumulations of T and B-cell populations with memory phenotypes, and to accumulation of putatively senescent and exhausted immune cells. The aging-related accumulations of functionally exhausted memory T lymphocytes, commonly secreting pro-inflammatory cytokines, together with mediators and factors of the innate immune system, are considered to contribute to the low-grade inflammation (inflammaging) often observed in elderly people. These senescent immune cells not only secrete inflammatory mediators, but are also able to negatively modulate their environments. In this review, we give a short summary of the ways that immunosenescence, inflammaging, and CMV infection may cause insufficient immune responses, contribute to the establishment of the hyperinflammatory syndrome and impact the severity of the coronavirus disease 2019 (COVID-19) in elderly people.

Physiology ◽  
2012 ◽  
Vol 27 (5) ◽  
pp. 300-307 ◽  
Author(s):  
Rémy Burcelin

The recent epidemic of obesity and diabetes and the diversity at the individual level could be explained by the intestinal microbiota-to-host relationship. More than four million gene products from the microbiome could interact with the immune system to induce a tissue metabolic infection, which is the molecular origin of the low-grade inflammation that characterizes the onset of obesity and diabetes.


2018 ◽  
pp. 241-250
Author(s):  
Adaliene Versiani Matos Ferreira ◽  
Laís Bhering Martins ◽  
Nayara Mussi Monteze ◽  
Geneviève Marcelin ◽  
Karine Clément

Eating disorders (EDs) are characterized by dysregulation in eating behavior leading to extreme increase or decrease in food intake that, in turn, changes body weight, adiposity, and physical health. Anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED) are the three major eating disorders. Peculiar immune abnormalities occur in these conditions. Previous studies have reported a higher number of CD4+ T lymphocytes in patients with AN, which are related to a relative resistance to viral infections, even in the presence of leukopenia. It has also been proposed that a cluster of cytokines is altered in these patients. A chronic low-grade inflammation has been observed in obese people with BED and in patients with AN, but with a different profile in each condition. In this context, antagonist drugs of specific cytokines, such as anti-TNF, showed improvement of AN-related symptoms, but increased weight gain in obese subjects. The identification of specific molecules and/or immune cells that impair neuronal circuits implicated in eating behaviors may contribute to the development of pharmacological strategies for eating disorders.


2019 ◽  
Vol 20 (4) ◽  
pp. 839 ◽  
Author(s):  
Erika Di Zazzo ◽  
Rita Polito ◽  
Silvia Bartollino ◽  
Ersilia Nigro ◽  
Carola Porcile ◽  
...  

Adipose tissue is a key regulator of energy balance playing an active role in lipid storage as well as in synthesizing several hormones directly involved in the pathogenesis of obesity. Obesity represents a peculiar risk factor for a growing list of cancers and is frequently associated to poor clinical outcome. The mechanism linking obesity and cancer is not completely understood, but, amongst the major players, there are both chronic low-grade inflammation and deregulation of adipokines secretion. In obesity, the adipose tissue is pervaded by an abnormal number of immune cells that create an inflammatory environment supporting tumor cell proliferation and invasion. Adiponectin (APN), the most abundant adipokine, shows anti-inflammatory, anti-proliferative and pro-apoptotic properties. Circulating levels of APN are drastically decreased in obesity, suggesting that APN may represent the link factor between obesity and cancer risk. The present review describes the recent advances on the involvement of APN and its receptors in the etiology of different types of cancer.


2019 ◽  
Vol 44 (5) ◽  
pp. 512-520 ◽  
Author(s):  
Débora Romualdo Lacerda ◽  
Michele Macedo Moraes ◽  
Albená Nunes-Silva ◽  
Kátia Anunciação Costa ◽  
Débora Fernandes Rodrigues ◽  
...  

Obesity is associated with an energy imbalance that results from excessive energy intake, low diet quality, and a sedentary lifestyle. The increased consumption of a high-refined carbohydrate (HC) diet is strongly related to higher adiposity and low-grade inflammation. Aerobic training is a well-known nonpharmacological intervention to treat obesity and metabolic disturbances. However, the mechanisms through which aerobic training ameliorates the low-grade inflammation induced by an HC diet should be further investigated. Our hypothesis herein was that aerobic training would decrease the recruitment of leukocytes in adipose tissue, thereby reducing the levels of cytokines and improving metabolism in mice fed an HC diet. Male Balb/c mice were assigned to the following groups: control diet/nontrained (C-NT), control diet/trained (C-T), high-refined carbohydrate diet/nontrained (HC-NT), and high-refined carbohydrate diet/trained (HC-T). Mice were submitted to moderate-intensity training sessions that consisted of running 60 min per day for 8 weeks. An intravital microscopy technique was performed in vivo in anesthetized mice to visualize the microvasculature of the adipose tissue. The HC diet induced obesity and increased the influx of immune cells into the adipose tissue. In contrast, HC-T mice presented a lower adiposity and adipocyte area. Furthermore, relative to HC-NT mice, HC-T mice showed increased resting energy expenditure, decreased recruitment of immune cells in the adipose tissue, reduced cytokine levels, and ameliorated hyperglycemia and fatty liver deposition. Collectively, our data enhance understanding about the anti-inflammatory effect of aerobic training and shed light on the adipose tissue-mediated mechanisms by which training promotes a healthier metabolic profile.


2021 ◽  
Author(s):  
Liza Konnikova ◽  
Jessica M Toothaker ◽  
Oluwabunmi Olaloye ◽  
Blake T McCourt ◽  
Collin C McCourt ◽  
...  

Maintenance of healthy pregnancy is reliant on successful balance between the fetal and maternal immune systems. Although maternal mechanisms responsible have been well studied, those used by the fetal immune system remain poorly understood. Using suspension mass cytometry and various imaging modalities, we report a complex immune system within the mid-gestation (17-23 weeks) human placental villi (PV). Further, we identified immunosuppressive signatures in innate immune cells and antigen presenting cells that potentially maintain immune homeostasis in utero. Consistent with recent reports in other fetal organs, T cells with memory phenotypes were detected within the PV tissue and vasculature. Moreover, we determined PV T cells could be activated to upregulate CD69 and proliferate after T cell receptor (TCR) stimulation and when exposed to maternal uterine antigens. Finally, we report that cytokine production by PV T cells is sensitive to TCR stimulation and varies between mid-gestation, preterm (26-35 weeks) and term deliveries (37-40 weeks). Collectively, we elucidated the complexity and functional maturity of fetal immune cells within the PV and highlighted their immunosuppressive potential.


2020 ◽  
Vol 13 ◽  
pp. 117863882097902
Author(s):  
Hunter S Waldman ◽  
Matthew J McAllister

High-stress occupations (ie, firefighters, military personnel, police officers, etc.) are often plagued by cardiometabolic diseases induced by exposure to chronic stressors. Interrupted sleep cycles, poor dietary patterns, lack of physical activity, and smoke exposure along with simultaneous psychological stressors promote chronic low-grade inflammation and excessive oxidative stress. Collectively, these data suggest that practical interventions which might mitigate the underlying pathologies of these cardiometabolic diseases are warranted. Ketones, specifically R-βHB, modulates intracellular signaling cascades such as the cellular redox ratios of NAD+/NADH, the activity of NAD dependent deacetylases SIRT1 and SIRT3, and promotes a robust mitochondrial environment which favors reductions in oxidative stress and inflammation. To date, the literature examining R-βHB as a signaling metabolite has mostly been performed from endogenous R-βHB production achieved through nutritional ketosis or cell culture and mouse models using exogenous R-βHB. To the authors knowledge, only 1 study has attempted to report on the effects of exogenous ketones and the mitigation of oxidative stress/inflammation. Therefore, the scope of this review is to detail the mechanisms of R-βHB as a signaling metabolite and the role that exogenous ketones might play in mitigating diseases in individuals serving in high-stress occupations.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 241-253 ◽  
Author(s):  
Yunxiao Liu ◽  
Patthara Kongsuphol ◽  
Su Yin Chiam ◽  
Qing Xin Zhang ◽  
Sajay Bhuvanendran Nair Gourikutty ◽  
...  

Infiltration of immune cells into adipose tissue is associated with chronic low-grade inflammation in obese individuals.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Shaza B. Zaghlool ◽  
Brigitte Kühnel ◽  
Mohamed A. Elhadad ◽  
Sara Kader ◽  
Anna Halama ◽  
...  

AbstractDNA methylation and blood circulating proteins have been associated with many complex disorders, but the underlying disease-causing mechanisms often remain unclear. Here, we report an epigenome-wide association study of 1123 proteins from 944 participants of the KORA population study and replication in a multi-ethnic cohort of 344 individuals. We identify 98 CpG-protein associations (pQTMs) at a stringent Bonferroni level of significance. Overlapping associations with transcriptomics, metabolomics, and clinical endpoints suggest implication of processes related to chronic low-grade inflammation, including a network involving methylation of NLRC5, a regulator of the inflammasome, and associated pQTMs implicating key proteins of the immune system, such as CD48, CD163, CXCL10, CXCL11, LAG3, FCGR3B, and B2M. Our study links DNA methylation to disease endpoints via intermediate proteomics phenotypes and identifies correlative networks that may eventually be targeted in a personalized approach of chronic low-grade inflammation.


Obesity ◽  
2009 ◽  
Vol 17 (4) ◽  
pp. 803-808 ◽  
Author(s):  
Kei Nakajima ◽  
Hiroko Yamaoka ◽  
Kumiko Morita ◽  
Midori Ebata ◽  
Satoko Eguchi ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
pp. 16-30
Author(s):  
Bushra N. Al Hadra

Summary The human life span could be influenced by the combined effect of environment, lifestyle, and genetic factors. Twin and family studies suggest that our genes control up to 25% of the lifespan. The aging immune system undergoes age-associated changes at multiple levels, resulting in a gradual loss of its ability to protect the organism against infections, low vaccine responses, and an increased probability of developing autoimmune diseases and malignancies. The highly polymorphic HLA complex is one of the major gene candidates associated with aging due to its crucial role in developing adaptive immunity and protecting the organism. Most of the data available have so far demonstrated a positive association with healthy aging for HLA alleles/haplotypes as protective against malignancies, autoimmune diseases, and conferring better control and response to infections. One of aging’s main manifestations is the chronic, low-grade inflammatory state observed in older people, caused by an imbalance between pro- and anti-inflammatory cytokines. In general, it is has been agreed that longevity is related to anti-inflammatory genotype profiles. With advanced age, changes also occur in the B cell repertoire, which significantly affects the humoral immunity and leads to inadequate responses to infections and vaccines in the elderly. New genetic biomarkers associated with aging are being explored and discovered, contributing to a better understanding of the molecular processes underlying the immune dysfunction related to aging and developing strategies for rejuvenating the immune system based on immune-risk phenotypes.


Sign in / Sign up

Export Citation Format

Share Document