scholarly journals Cannabinoid Type-2 Receptor Agonist, JWH133 May Be a Possible Candidate for Targeting Infection, Inflammation, and Immunity in COVID-19

Immuno ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 285-304
Author(s):  
Niraj Kumar Jha ◽  
Charu Sharma ◽  
Mohamed Fizur Nagoor Meeran ◽  
Saurabh Kumar Jha ◽  
Vivek Dhar Dwivedi ◽  
...  

The COVID-19 pandemic, caused by SARS-CoV-2, is a deadly disease affecting millions due to the non-availability of drugs and vaccines. The majority of COVID-19 drugs have been repurposed based on antiviral, immunomodulatory, and antibiotic potential. The pathogenesis and advanced complications with infection involve the immune-inflammatory cascade. Therefore, a therapeutic strategy could reduce infectivity, inflammation, and immune modulation. In recent years, modulating the endocannabinoid system, particularly activation of the cannabinoid type 2 (CB2) receptor is a promising therapeutic target for modulation of immune-inflammatory responses. JWH133, a selective, full functional agonist of the CB2 receptor, has been extensively studied for its potent anti-inflammatory, antiviral, and immunomodulatory properties. JWH133 modulates numerous signaling pathways and inhibits inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. In this study, we propose that JWH133 could be a promising candidate for targeting infection, immunity, and inflammation in COVID-19, due to its pharmacological and molecular mechanisms in numerous preclinical efficacy and safety studies, along with its immunomodulatory, anti-inflammatory, organoprotective, and antiviral properties. Thus, JWH133 should be investigated in preclinical and clinical studies for its potential as an agent or adjuvant with other agents for its effect on viremia, infectivity, immune modulation, resolution of inflammation, reduction in severity, and progression of complications in COVID-19. JWH133 is devoid of psychotropic effects due to CB2 receptor selectivity, has negligible toxicity, good bioavailability and druggable properties, including pharmacokinetic and physicochemical effects. We believe that JWH133 could be a promising drug and may inspire further studies for an evidence-based approach against COVID-19.

2021 ◽  
Vol 12 ◽  
Author(s):  
Niraj Kumar Jha ◽  
Charu Sharma ◽  
Hebaallah Mamdouh Hashiesh ◽  
Seenipandi Arunachalam ◽  
MF Nagoor Meeran ◽  
...  

Coronavirus disease (COVID-19), caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing pandemic and presents a public health emergency. It has affected millions of people and continues to affect more, despite tremendous social preventive measures. Identifying candidate drugs for the prevention and treatment of COVID-19 is crucial. The pathogenesis and the complications with advanced infection mainly involve an immune-inflammatory cascade. Therefore, therapeutic strategy relies on suppressing infectivity and inflammation, along with immune modulation. One of the most promising therapeutic targets for the modulation of immune-inflammatory responses is the endocannabinoid system, particularly the activation of cannabinoid type 2 receptors (CB2R), a G-protein coupled receptor which mediates the anti-inflammatory properties by modulating numerous signaling pathways. To pharmacologically activate the CB2 receptors, a naturally occurring cannabinoid ligand, beta-caryophyllene (BCP), received attention due to its potent anti-inflammatory, antiviral, and immunomodulatory properties. BCP is recognized as a full selective functional agonist on CB2 receptors and produces therapeutic effects by activating CB2 and the nuclear receptors, peroxisome proliferator-activated receptors (PPARs). BCP is regarded as the first dietary cannabinoid with abundant presence across cannabis and non-cannabis plants, including spices and other edible plants. BCP showed tissue protective properties and favorably modulates numerous signaling pathways and inhibits inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. Based on its pharmacological properties, molecular mechanisms, and the therapeutic potential of BCP as an immunomodulator, anti-inflammatory, organ-protective, and antiviral, we hypothesize that BCP could be a promising therapeutic and/or preventive candidate to target the triad of infection, immunity, and inflammation in COVID-19. In line with numerous studies that proposed the potential of cannabinoids in COVID-19, BCP may be a novel candidate compound for pharmaceutical and nutraceutical development due to its unique functional receptor selectivity, wide availability and accessibility, dietary bioavailability, nonpsychoactivity, and negligible toxicity along with druggable properties, including favorable pharmacokinetic and physicochemical properties. Based on reasonable pharmacological mechanisms and therapeutic properties, we speculate that BCP has potential to be investigated against COVID-19 and will inspire further preclinical and clinical studies.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 1008 ◽  
Author(s):  
Luana Greco ◽  
Valentina Russo ◽  
Cinzia Rapino ◽  
Clara Di Germanio ◽  
Filomena Fezza ◽  
...  

Amniotic epithelial cells (AEC) have been proposed as promising clinical candidates for regenerative medicine therapies due to their immunomodulatory capacity. In this context, the endocannabinoid system (ECS) has been identified as mediating the immune-stem cell dialogue, even if no information on AEC is available to date. Therefore, this study was designed to assess whether ECS is involved in tuning the constitutive and lipopolysaccharide (LPS)-induced ovine AEC anti-inflammatory and pro-inflammatory interleukin (IL-10, IL-4, and IL-12) profiles. Firstly, interleukins and ECS expressions were studied at different stages of gestation. Then, the role of cannabinoid receptors 1 and 2 (CB1 and CB2) on interleukin expression and release was investigated in middle stage AEC using selective agonists and antagonists. AEC displayed a degradative more than a synthetic endocannabinoid metabolism during the early and middle stages of gestation. At the middle stage, cannabinoid receptors mediated the balance between pro-inflammatory (IL-12) and anti-inflammatory (IL-4 and IL-10) interleukins. The activation of both receptors mediated an overall pro-inflammatory shift—CB1 reduced the anti-inflammatory and CB2 increased the pro-inflammatory interleukin release, particularly after LPS stimulation. Altogether, these data pave the way for the comprehension of AEC mechanisms tuning immune-modulation, crucial for the development of new AEC-based therapy protocols.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Youngjeon Lee ◽  
Sang-Rae Lee ◽  
Sung S. Choi ◽  
Hyeon-Gu Yeo ◽  
Kyu-Tae Chang ◽  
...  

Inflammation has a pivotal role in the pathogenesis of ischemic stroke, and recent studies posit that inflammation acts as a double-edged sword, not only detrimentally augmenting secondary injury, but also potentially promoting recovery. An initial event of inflammation in ischemic stroke is the activation of microglia, leading to production of both pro- and anti-inflammatory mediators acting through multiple receptor signaling pathways. In this review, we discuss the role of microglial mediators in acute ischemic stroke and elaborate on preclinical and clinical studies focused on microglia in stroke models. Understanding how microglia can lead to both pro- and anti-inflammatory responses may be essential to implement therapeutic strategies using immunomodulatory interventions in ischemic stroke.


Author(s):  
Carolina Parga Martins Pereira ◽  
Ana Carolina Remondi Souza ◽  
Andrea Rodrigues Vasconcelos ◽  
Pietra Sacramento Prado ◽  
José João Name

Cardiovascular disease is the most common cause of death. Oxidative stress and inflammation are pathophysiological processes involved in the development of cardiovascular diseases, so anti-inflammatory and antioxidant agents that modulate redox balance have become the targets of research to evaluate their molecular mechanisms and therapeutic properties. Astaxanthin, a carotenoid of the xanthophyll group, has potent antioxidant effects due to its molecular structure and its arrangement in the plasma membrane, factors that favor the neutralization of reactive oxygen and nitrogen species. This carotenoid also stands out for its anti-inflammatory activity, possibly interrelated with its antioxidant effect, as well as for its modulation of lipid and glucose metabolism. Considering the potential positive effects of astaxanthin on cardiovascular health evidenced by preclinical and clinical studies, this paper describes the molecular and cellular mechanisms related to the antioxidant and anti-inflammatory properties of this carotenoid in cardiovascular diseases, especially atherosclerosis.


2018 ◽  
Vol 315 (2) ◽  
pp. G231-G240 ◽  
Author(s):  
Thomas K. Hoang ◽  
Baokun He ◽  
Ting Wang ◽  
Dat Q. Tran ◽  
J. Marc Rhoads ◽  
...  

Lactobacillus reuteri DSM 17938 (LR 17938) has been shown to reduce the incidence and severity of necrotizing enterocolitis (NEC). It is unclear if preventing NEC by LR 17938 is mediated by Toll-like receptor 2 (TLR2), which is known to mediate proinflammatory responses to bacterial cell wall components. NEC was induced in newborn TLR2−/− or wild-type (WT) mice by the combination of gavage-feeding cow milk-based formula and exposure to hypoxia and cold stress. Treatment groups were administered formula supplemented with LR 17938 or placebo (deMan-Rogosa-Sharpe media). We observed that LR 17938 significantly reduced the incidence of NEC and reduced the percentage of activated effector CD4+T cells, while increasing Foxp3+ regulatory T cells in the intestinal mucosa of WT mice with NEC, but not in TLR2−/− mice. Dendritic cell (DC) activation by LR 17938 was mediated by TLR2. The percentage of tolerogenic DC in the intestine of WT mice was increased by LR 17938 treatment during NEC, a finding not observed in TLR2−/− mice. Furthermore, gut levels of proinflammatory cytokines IL-1β and IFN-γ were decreased after treatment with LR 17938 in WT mice but not in TLR2−/− mice. In conclusion, the combined in vivo and in vitro findings suggest that TLR2 receptors are involved in DC recognition and DC-priming of T cells to protect against NEC after oral administration of LR 17938. Our studies further clarify a major mechanism of probiotic LR 17938 action in preventing NEC by showing that neonatal immune modulation of LR 17938 is mediated by a mechanism requiring TLR2. NEW & NOTEWORTHY Lactobacillus reuteri DSM 17938 (LR 17938) has been shown to protect against necrotizing enterocolitis (NEC) in neonates and in neonatal animal models. The role of Toll-like receptor 2 (TLR2) as a sensor for gram-positive probiotics, activating downstream anti-inflammatory responses is unclear. Our current studies examined TLR2 −/− mice subjected to experimental NEC and demonstrated that the anti-inflammatory effects of LR 17938 are mediated via a mechanism requiring TLR2.


2014 ◽  
Vol 233 (1) ◽  
pp. 55-63 ◽  
Author(s):  
Valerio Chiurchiù ◽  
Mirko Lanuti ◽  
Giuseppina Catanzaro ◽  
Filomena Fezza ◽  
Cinzia Rapino ◽  
...  

Author(s):  
Yufei Xie ◽  
Annemarie H. Meijer ◽  
Marcel J. M. Schaaf

Dysregulation of the inflammatory response in humans can lead to various inflammatory diseases, like asthma and rheumatoid arthritis. The innate branch of the immune system, including macrophage and neutrophil functions, plays a critical role in all inflammatory diseases. This part of the immune system is well-conserved between humans and the zebrafish, which has emerged as a powerful animal model for inflammation, because it offers the possibility to image and study inflammatory responses in vivo at the early life stages. This review focuses on different inflammation models established in zebrafish, and how they are being used for the development of novel anti-inflammatory drugs. The most commonly used model is the tail fin amputation model, in which part of the tail fin of a zebrafish larva is clipped. This model has been used to study fundamental aspects of the inflammatory response, like the role of specific signaling pathways, the migration of leukocytes, and the interaction between different immune cells, and has also been used to screen libraries of natural compounds, approved drugs, and well-characterized pathway inhibitors. In other models the inflammation is induced by chemical treatment, such as lipopolysaccharide (LPS), leukotriene B4 (LTB4), and copper, and some chemical-induced models, such as treatment with trinitrobenzene sulfonic acid (TNBS), specifically model inflammation in the gastro-intestinal tract. Two mutant zebrafish lines, carrying a mutation in the hepatocyte growth factor activator inhibitor 1a gene (hai1a) and the cdp-diacylglycerolinositol 3-phosphatidyltransferase (cdipt) gene, show an inflammatory phenotype, and they provide interesting model systems for studying inflammation. These zebrafish inflammation models are often used to study the anti-inflammatory effects of glucocorticoids, to increase our understanding of the mechanism of action of this class of drugs and to develop novel glucocorticoid drugs. In this review, an overview is provided of the available inflammation models in zebrafish, and how they are used to unravel molecular mechanisms underlying the inflammatory response and to screen for novel anti-inflammatory drugs.


2019 ◽  
Vol 31 (9) ◽  
pp. 597-606 ◽  
Author(s):  
Kyoshiro Tsuge ◽  
Tomoaki Inazumi ◽  
Akira Shimamoto ◽  
Yukihiko Sugimoto

Abstract Prostaglandins (PGs) are the major lipid mediators in animals and which are biosynthesized from arachidonic acid by the cyclooxygenases (COX-1 or COX-2) as the rate-limiting enzymes. Prostaglandin E2 (PGE2), which is the most abundantly detected PG in various tissues, exerts versatile physiological and pathological actions via four receptor subtypes (EP1–4). Non-steroidal anti-inflammatory drugs, such as aspirin and indomethacin, exert potent anti-inflammatory actions by the inhibition of COX activity and the resulting suppression of PG production. Therefore, PGE2 has been shown to exacerbate several inflammatory responses and immune diseases. Recently, studies using mice deficient in each PG receptor subtype have clarified the detailed mechanisms underlying PGE2-associated inflammation and autoimmune diseases involving each EP receptor. Here, we review the recent advances in our understanding of the roles of PGE2 receptors in the progression of acute and chronic inflammation and autoimmune diseases. PGE2 induces acute inflammation through mast cell activation via the EP3 receptor. PGE2 also induces chronic inflammation and various autoimmune diseases through T helper 1 (Th1)-cell differentiation, Th17-cell proliferation and IL-22 production from Th22 cells via the EP2 and EP4 receptors. The possibility of EP receptor-targeted drug development for the treatment of immune diseases is also discussed.


Author(s):  
Aboagyewaah Oppong-Damoah ◽  
Brenda Marie Gannon ◽  
Kevin Sean Murnane

: Alcohol-use disorder (AUD) remains a major public health concern. In recent years, there has been a heightened interest in components of the endocannabinoid system for the treatment of AUD. Cannabinoid type 1 (CB1) receptors have been shown to modulate the rewarding effects of alcohol, reduce the abuse-related effects of alcohol, improve cognition, exhibit anti-inflammatory, and neuroprotective effects, which are all favorable properties of potential therapeutic candidates for the treatment of AUD. However, CB1 agonists have not been investigated for the treatment of AUD because they stimulate the motivational properties of alcohol, increase alcohol intake, and have the tendency to be abused. Preclinical data suggest significant potential for the use of CB1 antagonists to treat AUD; however, a clinical phase I/II trial with SR14716A (rimonabant), a CB1 receptor antagonist/inverse agonist showed that it produced serious neuropsychiatric adverse events such as anxiety, depression, and even suicidal ideation. This has redirected the field to focus on alternative components of the endocannabinoid system, including cannabinoid type 2 (CB2) receptor agonists as a potential therapeutic target for AUD. CB2 receptor agonists are of particular interest because they can modulate the reward pathway, reduce abuse-related effects of alcohol, reverse neuroinflammation, improve cognition, and exhibit anti-inflammatory and neuroprotective effects, without exhibiting the psychiatric side effects seen with CB1 antagonists. Accordingly, this article presents an overview of the studies reported in the literature that have investigated CB2 receptor agonists with regards to AUD and provides commentary as to whether this receptor is a worthy target for continued investigation.


2009 ◽  
Vol 297 (6) ◽  
pp. E1276-E1282 ◽  
Author(s):  
Long Cheng ◽  
Xiao Han ◽  
Yuguang Shi

Platelet-activating factor (PAF) and lysophosphatidylcholine (LPC) are potent inflammatory lipids. Elevated levels of PAF and LPC are associated with the onset of diabetic retinopathy and neurodegeneration. However, the molecular mechanisms underlying such defects remain elusive. LPCAT1 is a newly reported lysophospholipid acyltransferase implicated in the anti-inflammatory response by its role in conversion of LPC to PC. Intriguingly, the LPCAT1 enzyme also catalyzes the synthesis of PAF from lyso-PAF with use of acetyl-CoA as a substrate. The present studies investigated regulatory roles of LPCAT1 in the synthesis of inflammatory lipids during the onset of diabetes. Our work shows that LPCAT1 plays an important role in the inactivation of PAF by catalyzing the synthesis of alkyl-PC, an inactivated form of PAF with use of acyl-CoA and lyso-PAF as substrates. In support of a role of LPCAT1 in anti-inflammatory responses in diabetic retinopathy, LPCAT1 is most abundantly expressed in the retina. Moreover, LPCAT1 mRNA levels and acyltransferase activity toward lyso-PAF and LPC were significantly downregulated in retina and brain tissues in response to the onset of diabetes in Ins2 Akita and db/db mice, mouse models of type 1 and type 2 diabetes, respectively. Conversely, treatment of db/db mice with rosiglitazone, an antidiabetes compound, significantly upregulated LPCAT1 mRNA levels concurrently with increased acyltransferase activity in the retina and brain. Collectively, these findings identified a novel regulatory role of LPCAT1 in catalyzing the inactivation of inflammatory lipids in the retina of diabetic mice.


Sign in / Sign up

Export Citation Format

Share Document